6 resultados para Sampling Theorem

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric kernels are quite useful for the estimation of density functions with bounded support. Gamma kernels are designed to handle density functions whose supports are bounded from one end only, whereas beta kernels are particularly convenient for the estimation of density functions with compact support. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape varies according to the location of the data point, thus also changing the amount of smoothing. This paper applies the central limit theorem for degenerate U-statistics to compute the limiting distribution of a class of asymmetric kernel functionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bellman's methods for dynamic optimization constitute the present mainstream in economics. However, some results associated with optimal controI can be particularly usefuI in certain problems. The purpose of this note is presenting such an example. The value function derived in Lucas' (2000) shopping-time economy in Infiation and Welfare need not be concave, leading this author to develop numerical analyses to determine if consumer utility is in fact maximized along the balanced path constructed from the first order conditions. We use Arrow's generalization of Mangasarian's results in optimal control theory and develop sufficient conditions for the problem. The analytical conclusions and the previous numerical results are compatible .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that, for almost every two-player game with imperfect monitoring, the conclusions of the classical folk theorem are false. So, even though these games admit a well-known approximate folk theorem, an exact folk theorem may only be obtained for a measure zero set of games. A complete characterization of the efficient equilibria of almost every such game is also given, along with an inefficiency result on the imperfect monitoring prisoner s dilemma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.