4 resultados para Robust model

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A forte alta dos imóveis no Brasil nos últimos anos iniciou um debate sobre a possível existência de uma bolha especulativa. Dada a recente crise do crédito nos Estados Unidos, é factível questionar se a situação atual no Brasil pode ser comparada à crise americana. Considerando argumentos quantitativos e fundamentais, examina-se o contexto imobiliário brasileiro e questiona-se a sustentabilidade em um futuro próximo. Primeiramente, analisou-se a taxa de aluguel e o nível de acesso aos imóveis e também utilizou-se um modelo do custo real para ver se o mercado está em equilíbrio o não. Depois examinou-se alguns fatores fundamentais que afetam o preço dos imóveis – oferta e demanda, crédito e regulação, fatores culturais – para encontrar evidências que justificam o aumento dos preços dos imóveis. A partir dessas observações tentou-se chegar a uma conclusão sobre a evolução dos preços no mercado imobiliário brasileiro. Enquanto os dados sugerem que os preços dos imóveis estão supervalorizados em comparação ao preço dos aluguéis, há evidências de uma legítima demanda por novos imóveis na emergente classe média brasileira. Um risco maior pode estar no mercado de crédito, altamente alavancado em relação ao consumidor brasileiro. No entanto, não se encontrou evidências que sugerem mais do que uma temporária estabilização ou correção no preço dos imóveis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atypical points in the data may result in meaningless e±cient frontiers. This follows since portfolios constructed using classical estimates may re°ect neither the usual nor the unusual days patterns. On the other hand, portfolios constructed using robust approaches are able to capture just the dynamics of the usual days, which constitute the majority of the business days. In this paper we propose an statistical model and a robust estimation procedure to obtain an e±cient frontier which would take into account the behavior of both the usual and most of the atypical days. We show, using real data and simulations, that portfolios constructed in this way require less frequent rebalancing, and may yield higher expected returns for any risk level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este estudo investiga o poder preditivo fora da amostra, um mês à frente, de um modelo baseado na regra de Taylor para previsão de taxas de câmbio. Revisamos trabalhos relevantes que concluem que modelos macroeconômicos podem explicar a taxa de câmbio de curto prazo. Também apresentamos estudos que são céticos em relação à capacidade de variáveis macroeconômicas preverem as variações cambiais. Para contribuir com o tema, este trabalho apresenta sua própria evidência através da implementação do modelo que demonstrou o melhor resultado preditivo descrito por Molodtsova e Papell (2009), o “symmetric Taylor rule model with heterogeneous coefficients, smoothing, and a constant”. Para isso, utilizamos uma amostra de 14 moedas em relação ao dólar norte-americano que permitiu a geração de previsões mensais fora da amostra de janeiro de 2000 até março de 2014. Assim como o critério adotado por Galimberti e Moura (2012), focamos em países que adotaram o regime de câmbio flutuante e metas de inflação, porém escolhemos moedas de países desenvolvidos e em desenvolvimento. Os resultados da nossa pesquisa corroboram o estudo de Rogoff e Stavrakeva (2008), ao constatar que a conclusão da previsibilidade da taxa de câmbio depende do teste estatístico adotado, sendo necessária a adoção de testes robustos e rigorosos para adequada avaliação do modelo. Após constatar não ser possível afirmar que o modelo implementado provém previsões mais precisas do que as de um passeio aleatório, avaliamos se, pelo menos, o modelo é capaz de gerar previsões “racionais”, ou “consistentes”. Para isso, usamos o arcabouço teórico e instrumental definido e implementado por Cheung e Chinn (1998) e concluímos que as previsões oriundas do modelo de regra de Taylor são “inconsistentes”. Finalmente, realizamos testes de causalidade de Granger com o intuito de verificar se os valores defasados dos retornos previstos pelo modelo estrutural explicam os valores contemporâneos observados. Apuramos que o modelo fundamental é incapaz de antecipar os retornos realizados.