3 resultados para Radial distribution function
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
This paper derives both lower and upper bounds for the probability distribution function of stationary ACD(p, q) processes. For the purpose of illustration, I specialize the results to the main parent distributions in duration analysis. Simulations show that the lower bound is much tighter than the upper bound.
Resumo:
Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.
Resumo:
Based on three versions of a small macroeconomic model for Brazil, this paper presents empirical evidence on the effects of parameter uncertainty on monetary policy rules and on the robustness of optimal and simple rules over different model specifications. By comparing the optimal policy rule under parameter uncertainty with the rule calculated under purely additive uncertainty, we find that parameter uncertainty should make policymakers react less aggressively to the economy's state variables, as suggested by Brainard's "conservatism principIe", although this effect seems to be relatively small. We then informally investigate each rule's robustness by analyzing the performance of policy rules derived from each model under each one of the alternative models. We find that optimal rules derived from each model perform very poorly under alternative models, whereas a simple Taylor rule is relatively robusto We also fmd that even within a specific model, the Taylor rule may perform better than the optimal rule under particularly unfavorable realizations from the policymaker' s loss distribution function.