1 resultado para REGRESSION TREE
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (20)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (6)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (54)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Boston University Digital Common (2)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (109)
- CentAUR: Central Archive University of Reading - UK (105)
- Center for Jewish History Digital Collections (6)
- Chapman University Digital Commons - CA - USA (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (100)
- Cochin University of Science & Technology (CUSAT), India (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (9)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (39)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (26)
- Indian Institute of Science - Bangalore - Índia (64)
- Instituto Politécnico do Porto, Portugal (8)
- Massachusetts Institute of Technology (6)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (12)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (112)
- Queensland University of Technology - ePrints Archive (129)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (6)
- Université de Montréal, Canada (14)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (5)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Relevância:
Resumo:
The goal of this paper is to introduce a class of tree-structured models that combines aspects of regression trees and smooth transition regression models. The model is called the Smooth Transition Regression Tree (STR-Tree). The main idea relies on specifying a multiple-regime parametric model through a tree-growing procedure with smooth transitions among different regimes. Decisions about splits are entirely based on a sequence of Lagrange Multiplier (LM) tests of hypotheses.