58 resultados para Price forecast
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
O objetivo dessa dissertação é estabelecer um modelo quantitativo de gestão de riscos estratégicos de um ativo de produção de petróleo, notadamente o valor em risco do seu fluxo de caixa e de sua rentabilidade. Para tanto, foi utilizado um modelo de fluxo de caixa onde a receita operacional foi definida como variável estocástica. A receita operacional foi estimada a partir de uma função de perdas que descreve o volume de produção de petróleo, e de uma trajetória de preços definida por um modelo geométrico browniano sem reversão a média e com volatilidade descrita por um processo GARCH. Os resultados obtidos demonstram que o modelo proposto é capaz de fornecer informações importantes para a gestão de riscos de ativos de produção de petróleo ao passo que permite a quantificação de diferentes fatores de risco que afetam a rentabilidade das operações. Por fim, o modelo aqui proposto pode ser estendido para a avaliação do risco financeiro e operacional de um conjunto de ativos de petróleo, considerando sua estrutura de dependência e a existência de restrições de recursos financeiros, físicos e humanos.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.
Resumo:
This paper investigates the impact of price limits on the Brazil- ian future markets using high frequency data. The aim is to identify whether there is a cool-off or a magnet effect. For that purpose, we examine a tick-by-tick data set that includes all contracts on the São Paulo stock index futures traded on the Brazilian Mercantile and Futures Exchange from January 1997 to December 1999. Our main finding is that price limits drive back prices as they approach the lower limit. There is a strong cool-off effect of the lower limit on the conditional mean, whereas the upper limit seems to entail a weak magnet effect on the conditional variance. We then build a trading strategy that accounts for the cool-off effect so as to demonstrate that the latter has not only statistical, but also economic signifi- cance. The resulting Sharpe ratio indeed is way superior to the buy-and-hold benchmarks we consider.
Resumo:
A combinação de previsões é caracterizada pelo aumento da precisão de prognósticos decorrente da complementaridade da informação contida nas previsões individuais. Este trabalho parte das idéias do consagrado artigo de Bates e Granger (1969) com o objetivo de investigar se há como elevar a precisão de previsões de índices de preços. Há evidências de que, embora os ganhos da combinação sejam limitados, os riscos decorrentes da combinação são menores que seus benefícios.
Resumo:
Nesta Tese foram apresentadas algumas alternativas de antecipação do preço futuro do aço a partir do emprego de modelos econométricos. Estes modelos foram definidos em função da análise do comportamento, no longo prazo, entre as séries de preços do aço no Brasil vis-à-vis seus respectivos preços no exterior. A verificação deste comportamento de longo prazo foi realizada através do teste de cointegração. A partir da constatação da não cointegração dessas séries, foram definidos dois modelos, cujas previsões, para diversos períodos, foram aqui apresentadas. Foi feita uma análise comparativa, onde foram identificados o melhor modelo e para quais temporalidades de previsão são melhor empregados. Como foi aqui comprovado, o aço é um insumo primordial nos empreendimentos industriais. Considerando que, atualmente, os preços são demandados de forma firme, ou seja, sem possibilidade de alteração, faz-se necessária a identificação de mecanismos de antecipação dos movimentos futuros desta commodity, de modo que se possa considerá-los na definição do preço ofertado, reduzindo assim perdas por suas flutuações inesperadas.
Resumo:
In this paper I obtain the mixed strategy symmetric equilibria of the first-price auction for any distribution. The equilibrium is unique. The solution turns out to be a combination of absolutely continuous distributions case and the discrete distributions case.
Resumo:
Using data from the United States, Japan, Germany , United Kingdom and France, Sims (1992) found that positive innovations to shortterm interest rates led to sharp, persistent increases in the price level. The result was conÖrmed by other authors and, as a consequence of its non-expectable nature, was given the name "price puzzle" by Eichenbaum (1992). In this paper I investigate the existence of a price puzzle in Brazil using the same type of estimation and benchmark identiÖcation scheme employed by Christiano et al. (2000). In a methodological improvement over these studies, I qualify the results with the construction of bias-corrected bootstrap conÖdence intervals. Even though the data does show the existence of a statistically signiÖcant price puzzle in Brazil, it lasts for only one quarter and is quantitatively immaterial
Resumo:
In this paper I obtain the mixed strategy symmetric equilibria of the first-price auction for any distribution. The equilibrium is unique. The solution turns out to be a combination of absolutely continuous distributions case and the discrete distributions case.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.
Resumo:
Looking closely at the PPP argument, it states that the currencies purchasing power should not change when comparing the same basket goods across countries, and these goods should all be tradable. Hence, if PPP is valid at all, it should be captured by the relative price indices that best Öts these two features. We ran a horse race among six di§erent price indices available from the IMF database to see which one would yield higher PPP evidence, and, therefore, better Öt the two features. We used RER proxies measured as the ratio of export unit values, wholesale prices, value added deáators, unit labor costs, normalized unit labor costs and consumer prices, for a sample of 16 industrial countries, with quarterly data from 1975 to 2002. PPP was tested using both the ADF and the DFGLS unit root test of the RER series. The RER measured as WPI ratios was the one for which PPP evidence was found for the larger number of countries: six out of sixteen when we use DF-GLS test with demeaned series. The worst measure of all was the RER based on the ratio of foreign CPIs and domestic WPI. No evidence of PPP at all was found for this measure.
Resumo:
This paper investigates the impact of price limits on the Brazilian futures markets using high frequency data. The aim is to identify whether there is a cool-off or a magnet effect. For that purpose, we examine a tick-by-tick data set that includes all contracts on the S˜ao Paulo stock index futures traded on the Brazilian Mercantile and Futures Exchange from January 1997 to December 1999. The results indicate that the conditional mean features a floor cool-off effect, whereas the conditional variance significantly increases as the price approaches the upper limit. We then build a trading strategy that accounts for the cool-off effect in the conditional mean so as to demonstrate that the latter has not only statistical, but also economic significance. The in-sample Sharpe ratio indeed is way superior to the buy-and-hold benchmarks we consider, whereas out-of-sample results evince similar performances.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise, based upon data from a well known survey is also presented. Overall, these results show promise for the feasible bias-corrected average forecast.