2 resultados para Predicting treatment time

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper performs a thorough statistical examination of the time-series properties of the daily market volatility index (VIX) from the Chicago Board Options Exchange (CBOE). The motivation lies not only on the widespread consensus that the VIX is a barometer of the overall market sentiment as to what concerns investors' risk appetite, but also on the fact that there are many trading strategies that rely on the VIX index for hedging and speculative purposes. Preliminary analysis suggests that the VIX index displays long-range dependence. This is well in line with the strong empirical evidence in the literature supporting long memory in both options-implied and realized variances. We thus resort to both parametric and semiparametric heterogeneous autoregressive (HAR) processes for modeling and forecasting purposes. Our main ndings are as follows. First, we con rm the evidence in the literature that there is a negative relationship between the VIX index and the S&P 500 index return as well as a positive contemporaneous link with the volume of the S&P 500 index. Second, the term spread has a slightly negative long-run impact in the VIX index, when possible multicollinearity and endogeneity are controlled for. Finally, we cannot reject the linearity of the above relationships, neither in sample nor out of sample. As for the latter, we actually show that it is pretty hard to beat the pure HAR process because of the very persistent nature of the VIX index.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to evaluate the effect of the 1985 ”Employment Services for Ex-Offenders” (ESEO) program on recidivism. Initially, the sample has been split randomly in a control group and a treatment group. However, the actual treatment (mainly being job related counseling) only takes place conditional on finding a job, and not having been arrested, for those selected in the treatment group. We use a multiple proportional hazard model with unobserved heterogeneity for job seach and recidivism time which incorporates the conditional treatment effect. We find that the program helps to reduce criminal activity, contrary to the result of the previous analysis of this data set. This finding is important for crime prevention policy.