2 resultados para Petroleum, Synthetic.

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthetic control (SC) method has been recently proposed as an alternative method to estimate treatment e ects in comparative case studies. Abadie et al. [2010] and Abadie et al. [2015] argue that one of the advantages of the SC method is that it imposes a data-driven process to select the comparison units, providing more transparency and less discretionary power to the researcher. However, an important limitation of the SC method is that it does not provide clear guidance on the choice of predictor variables used to estimate the SC weights. We show that such lack of speci c guidances provides signi cant opportunities for the researcher to search for speci cations with statistically signi cant results, undermining one of the main advantages of the method. Considering six alternative speci cations commonly used in SC applications, we calculate in Monte Carlo simulations the probability of nding a statistically signi cant result at 5% in at least one speci cation. We nd that this probability can be as high as 13% (23% for a 10% signi cance test) when there are 12 pre-intervention periods and decay slowly with the number of pre-intervention periods. With 230 pre-intervention periods, this probability is still around 10% (18% for a 10% signi cance test). We show that the speci cation that uses the average pre-treatment outcome values to estimate the weights performed particularly bad in our simulations. However, the speci cation-searching problem remains relevant even when we do not consider this speci cation. We also show that this speci cation-searching problem is relevant in simulations with real datasets looking at placebo interventions in the Current Population Survey (CPS). In order to mitigate this problem, we propose a criterion to select among SC di erent speci cations based on the prediction error of each speci cations in placebo estimations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.