4 resultados para Parametric and semiparametric methods

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the real convergence hypothesis across Brazilian states. In order to test for the existence of income convergence the or- der of integration of real Gross State Product (GSP) per capita series is examined as well as their di¤erences with respect to the São Paulo state which is used as a benchmark state. Both parametric and semiparametric methods are used and the results show that convergence is achieved in the cases of Alagoas, Amazonas, Bahia, Goiás, Mato Grosso, Minas Gerais, Pernambuco, Piauí, Rio Grande do Sul, Rio de Janeiro and Santa Cata- rina and convergence is weakly achieved in the cases of Ceará, Maranhao, Pará, Paraná and Sergipe .The states of Espírito Santo, Paraíba and Rio Grande do Norte show no convergence. O artigo examina a hipótese de convergência real entre os estados brasileiros. Para testar a existência ou não da convergência da renda a ordem da integração da série do produto real bruto do estado per capita é examinada assim como suas diferenças com respeito ao estado de São Paulo que é usado como base. Foram utilizados métodos paramétricos e semiparametric e os resultados mostram que ocorre convergência nos estados: Alagoas, Amazonas, Baía, Goiás, Mato Grosso, Minas Gerais, Pernambuco, Piauí, Rio Grande do Sul, Rio de Janeiro e Santa Catarina e ocorre convergência fraca nos estados: Ceará, de Maranhão, Pará, Paraná e Sergipe. Nos estado

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a systematic and unified treatment of the developments in the area of kernel estimation in econometrics and statistics. Both the estimation and hypothesis testing issues are discussed for the nonparametric and semiparametric regression models. A discussion on the choice of windowwidth is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper performs a thorough statistical examination of the time-series properties of the daily market volatility index (VIX) from the Chicago Board Options Exchange (CBOE). The motivation lies not only on the widespread consensus that the VIX is a barometer of the overall market sentiment as to what concerns investors' risk appetite, but also on the fact that there are many trading strategies that rely on the VIX index for hedging and speculative purposes. Preliminary analysis suggests that the VIX index displays long-range dependence. This is well in line with the strong empirical evidence in the literature supporting long memory in both options-implied and realized variances. We thus resort to both parametric and semiparametric heterogeneous autoregressive (HAR) processes for modeling and forecasting purposes. Our main ndings are as follows. First, we con rm the evidence in the literature that there is a negative relationship between the VIX index and the S&P 500 index return as well as a positive contemporaneous link with the volume of the S&P 500 index. Second, the term spread has a slightly negative long-run impact in the VIX index, when possible multicollinearity and endogeneity are controlled for. Finally, we cannot reject the linearity of the above relationships, neither in sample nor out of sample. As for the latter, we actually show that it is pretty hard to beat the pure HAR process because of the very persistent nature of the VIX index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.