45 resultados para Option pricing
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
O objetivo desse trabalho é calcular o subsídio implícito aos produtores de arroz agulhinha, feijão preto, milho e soja, proveniente da política de preços mínimos, através da avaliação dos prêmios das opções de venda que correspondem à política de preços mínimos para essas commodities.
Resumo:
Multivariate Affine term structure models have been increasingly used for pricing derivatives in fixed income markets. In these models, uncertainty of the term structure is driven by a state vector, while the short rate is an affine function of this vector. The model is characterized by a specific form for the stochastic differential equation (SDE) for the evolution of the state vector. This SDE presents restrictions on its drift term which rule out arbitrages in the market. In this paper we solve the following inverse problem: Suppose the term structure of interest rates is modeled by a linear combination of Legendre polynomials with random coefficients. Is there any SDE for these coefficients which rules out arbitrages? This problem is of particular empirical interest because the Legendre model is an example of factor model with clear interpretation for each factor, in which regards movements of the term structure. Moreover, the Affine structure of the Legendre model implies knowledge of its conditional characteristic function. From the econometric perspective, we propose arbitrage-free Legendre models to describe the evolution of the term structure. From the pricing perspective, we follow Duffie et al. (2000) in exploring Legendre conditional characteristic functions to obtain a computational tractable method to price fixed income derivatives. Closing the article, the empirical section presents precise evidence on the reward of implementing arbitrage-free parametric term structure models: The ability of obtaining a good approximation for the state vector by simply using cross sectional data.
Resumo:
Esta dissertação tem como objetivo demonstrar a validade do método de análise da avaliação das oportunidades de investimentos que utiliza a Teoria das Opções Reais. De forma a demonstrar a aplicabilidade desta metodologia de avaliação, será exemplificado, com base no modelo das opções reais, uma oportunidade de investimento no setor de seguros. As opções reais fecham a brecha entre as finanças e o planejamento estratégico introduzindo um meio para incorporar o impacto da incerteza implícita nas oportunidades de investimento, e ao mesmo tempo considerando como as ações gerenciais podem limitar as possíveis perdas ou capitalizar os possíveis ganhos nos projetos de investimento. Este processo de avaliação não direciona somente os administradores a focar suas atenções nas diferentes oportunidades e alternativas estratégicas, mas fornece também uma metodologia sistemática para medir a influencia das ações contingentes sobre o próprio risco e valor do projeto. Os métodos tradicionais de avaliação dos investimentos assumem que os administradores adotem um comportamento passivo à implementação dos projetos, considerando somente o valor dos fluxos de caixa esperados dos mesmos. A partir da teoria de precificação das opções financeiras, as opções reais expandem o valor global do projeto incorporando os potenciais ganhos e limitando as possíveis perdas. O modelo de opções reais permite aos administradores alavancar o valor do acionista em um ambiente de negócios dinâmico considerando a possibilidade de uma gestão ótima das opções estratégicas e operacionais existentes. Tipicamente, o ativo subjacente é o valor bruto dos fluxos de caixa esperados do projeto, mas considerando a incerteza, o valor total do projeto deve considerar o valor implícito das opções reais presentes nas oportunidades de investimento. A flexibilidade gerencial, que permite adaptar as decisões futuras as mudanças inesperadas do mercado, representa um fonte crucial de valor agregado em um ambiente dinâmico. Muitas opções reais presentes nos projetos e que interagem entre si, podem ocorrer em paralelo ou seqüencialmente, de maneira que o valor combinado destas opções seja diferente da simples soma algébrica das opções individuais.
Resumo:
This thesis is composed of three articles with the subjects of macroeconomics and - nance. Each article corresponds to a chapter and is done in paper format. In the rst article, which was done with Axel Simonsen, we model and estimate a small open economy for the Canadian economy in a two country General Equilibrium (DSGE) framework. We show that it is important to account for the correlation between Domestic and Foreign shocks and for the Incomplete Pass-Through. In the second chapter-paper, which was done with Hedibert Freitas Lopes, we estimate a Regime-switching Macro-Finance model for the term-structure of interest rates to study the US post-World War II (WWII) joint behavior of macro-variables and the yield-curve. We show that our model tracks well the US NBER cycles, the addition of changes of regime are important to explain the Expectation Theory of the term structure, and macro-variables have increasing importance in recessions to explain the variability of the yield curve. We also present a novel sequential Monte-Carlo algorithm to learn about the parameters and the latent states of the Economy. In the third chapter, I present a Gaussian A ne Term Structure Model (ATSM) with latent jumps in order to address two questions: (1) what are the implications of incorporating jumps in an ATSM for Asian option pricing, in the particular case of the Brazilian DI Index (IDI) option, and (2) how jumps and options a ect the bond risk-premia dynamics. I show that jump risk-premia is negative in a scenario of decreasing interest rates (my sample period) and is important to explain the level of yields, and that gaussian models without jumps and with constant intensity jumps are good to price Asian options.
Resumo:
O objetivo do presente trabalho é analisar as características empíricas de uma série de retornos de dados em alta freqüência para um dos ativos mais negociados na Bolsa de Valores de São Paulo. Estamos interessados em modelar a volatilidade condicional destes retornos, testando em particular a presença de memória longa, entre outros fenômenos que caracterizam este tipo de dados. Nossa investigação revela que além da memória longa, existe forte sazonalidade intradiária, mas não encontramos evidências de um fato estilizado de retornos de ações, o efeito alavancagem. Utilizamos modelos capazes de captar a memória longa na variância condicional dos retornos dessazonalizados, com resultados superiores a modelos tradicionais de memória curta, com implicações importantes para precificação de opções e de risco de mercado
Resumo:
Esta tese é composta de três artigos sobre finanças. O primeiro tem o título "Nonparametric Option Pricing with Generalized Entropic Estimators " e estuda um método de apreçamento de derivativos em mercados incompletos. Este método está relacionado com membros da família de funções de Cressie-Read em que cada membro fornece uma medida neutra ao risco. Vários testes são feitos. Os resultados destes testes sugerem um modo de definir um intervalo robusto para preços de opções. Os outros dois artigos são sobre anúncios agendados em diferentes situações. O segundo se chama "Watching the News: Optimal Stopping Time and Scheduled Announcements" e estuda problemas de tempo de parada ótimo na presença de saltos numa data fixa em modelos de difusão com salto. Fornece resultados sobre a otimalidade do tempo de parada um pouco antes do anúncio. O artigo aplica os resultados ao tempo de exercício de Opções Americanas e ao tempo ótimo de venda de um ativo. Finalmente o terceiro artigo estuda um problema de carteira ótima na presença de custo fixo quando os preços podem saltar numa data fixa. Seu título é "Dynamic Portfolio Selection with Transactions Costs and Scheduled Announcement" e o resultado mais interessante é que o comportamento do investidor é consistente com estudos empíricos sobre volume de transações em momentos próximos de anúncios.
Resumo:
This paper constructs a unit root test baseei on partially adaptive estimation, which is shown to be robust against non-Gaussian innovations. We show that the limiting distribution of the t-statistic is a convex combination of standard normal and DF distribution. Convergence to the DF distribution is obtaineel when the innovations are Gaussian, implying that the traditional ADF test is a special case of the proposed testo Monte Carlo Experiments indicate that, if innovation has heavy tail distribution or are contaminated by outliers, then the proposed test is more powerful than the traditional ADF testo Nominal interest rates (different maturities) are shown to be stationary according to the robust test but not stationary according to the nonrobust ADF testo This result seems to suggest that the failure of rejecting the null of unit root in nominal interest rate may be due to the use of estimation and hypothesis testing procedures that do not consider the absence of Gaussianity in the data.Our results validate practical restrictions on the behavior of the nominal interest rate imposed by CCAPM, optimal monetary policy and option pricing models.
Resumo:
In the first chapter, we test some stochastic volatility models using options on the S&P 500 index. First, we demonstrate the presence of a short time-scale, on the order of days, and a long time-scale, on the order of months, in the S&P 500 volatility process using the empirical structure function, or variogram. This result is consistent with findings of previous studies. The main contribution of our paper is to estimate the two time-scales in the volatility process simultaneously by using nonlinear weighted least-squares technique. To test the statistical significance of the rates of mean-reversion, we bootstrap pairs of residuals using the circular block bootstrap of Politis and Romano (1992). We choose the block-length according to the automatic procedure of Politis and White (2004). After that, we calculate a first-order correction to the Black-Scholes prices using three different first-order corrections: (i) a fast time scale correction; (ii) a slow time scale correction; and (iii) a multiscale (fast and slow) correction. To test the ability of our model to price options, we simulate options prices using five different specifications for the rates or mean-reversion. We did not find any evidence that these asymptotic models perform better, in terms of RMSE, than the Black-Scholes model. In the second chapter, we use Brazilian data to compute monthly idiosyncratic moments (expected skewness, realized skewness, and realized volatility) for equity returns and assess whether they are informative for the cross-section of future stock returns. Since there is evidence that lagged skewness alone does not adequately forecast skewness, we estimate a cross-sectional model of expected skewness that uses additional predictive variables. Then, we sort stocks each month according to their idiosyncratic moments, forming quintile portfolios. We find a negative relationship between higher idiosyncratic moments and next-month stock returns. The trading strategy that sells stocks in the top quintile of expected skewness and buys stocks in the bottom quintile generates a significant monthly return of about 120 basis points. Our results are robust across sample periods, portfolio weightings, and to Fama and French (1993)’s risk adjustment factors. Finally, we identify a return reversal of stocks with high idiosyncratic skewness. Specifically, stocks with high idiosyncratic skewness have high contemporaneous returns. That tends to reverse, resulting in negative abnormal returns in the following month.
Resumo:
This paper presents results of a pricing system to compute the option adjusted spread ("DAS") of Eurobonds issued by Brazilian firms. The system computes the "DAS" over US treasury rates taktng imo account the embedded options present on these bonds. These options can be calls ("callable bond"), puts ("putable bond") or combinations ("callable and putable bond"). The pricing model takes into account the evolution of the term structure along time, is compatible with the observable market term structure and is able to compute risk measures such as duration and convexity, and pricing and hedging of options on these bonds. Examples show the ejJects of the embedded options on the spread and risk measures as well as the ejJects on the spread due to variations on the volatility parameters ofthe short rate.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the period 1976-1992. We also test a conditional APT modeI by using the difference between the 3-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from individual securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be important for the appropriate pricing of the portfolios.
Resumo:
Este trabalho utiliza retornos mensais de 10 portfólios de ações negociadas na Bovespa entre 1987 e 1997, a fim de testar a validade empírica do modelo APT. Foram criadas variáveis macroeconômicas como fatores de variância comum aos diversos portfólios. Além destes fatores serem estatisticamente significantes para explicar a relação entre os retornos dos diversos portfólios de uma maneira geral, foram encontradas evidências no sentido de validar o APT.
Resumo:
Estimating the parameters of the instantaneous spot interest rate process is of crucial importance for pricing fixed income derivative securities. This paper presents an estimation for the parameters of the Gaussian interest rate model for pricing fixed income derivatives based on the term structure of volatility. We estimate the term structure of volatility for US treasury rates for the period 1983 - 1995, based on a history of yield curves. We estimate both conditional and first differences term structures of volatility and subsequently estimate the implied parameters of the Gaussian model with non-linear least squares estimation. Results for bond options illustrate the effects of differing parameters in pricing.
Resumo:
Using the Pricing Equation, in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) mimicking portfolio which relies on the fact that its logarithm is the ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences, making it suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles.