6 resultados para Normal value

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este estudo faz uma revisão das origens do VaR, bem como dos conceitos e teorias que o fundamentam, e sua aplicabilidade aos fundos de pensão. Descreve as principais metodologias de cálculo e as situações nas quais o uso de cada uma é mais adequado. Revisa a literatura internacional acerca do uso do VaR como medida de risco pelos fundos de pensão. A seguir faz a previsão do VaR para as carteiras reais de três fundos de pensão brasileiros com três metodologias distintas: paramétrica, simulação histórica e simulação de Monte Carlo, esta última com duas suposições distintas para a distribuição dos retornos dos fatores de risco (normal e histórica). A partir disso, realiza um teste qualitativo, através da comparação do número de perdas efetivas realizadas pelas carteiras dos três fundos de pensão com o número de perdas correspondente admitido para os diferentes níveis de confiança utilizados no cálculo do VaR. O trabalho não encontra evidências de superioridade de nenhuma das metodologias de cálculo, sendo que todas elas superestimaram as perdas verificadas na prática (o VaR foi excedido menos vezes do que o esperado).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho aplica a teoria de cópulas à mensuração do risco de mercado, através do cálculo do Value at Risk (VaR). A função de cópula oferece uma maior flexibilidade para a agregação de riscos quando comparada com abordagens tradicionais de mensuração de risco. A teoria de cópulas permite a utilização de distribuições de probabilidade diferentes da normal para a modelagem individual dos fatores de risco. Além disso, diferentes estruturas de associação entre eles podem ser aplicadas sem que restrições sejam impostas às suas distribuições. Dessa forma, premissas como a normalidade conjunta dos retornos e a linearidade na dependência entre fatores de risco podem ser dispensadas, possibilitando a correta modelagem de eventos conjuntos extremos e de assimetria na relação de dependência. Após a apresentação dos principais conceitos associados ao tema, um modelo de cópula foi desenvolvido para o cálculo do VaR de três carteiras, expostas aos mercados brasileiros cambial e acionário. Em seguida, a sua precisão foi comparada com a das metodologias tradicionais delta-normal e de simulação histórica. Os resultados mostraram que o modelo baseado na teoria de cópulas foi superior aos tradicionais na previsão de eventos extremos, representados pelo VaR 99%. No caso do VaR 95%, o modelo delta-normal apresentou o melhor desempenho. Finalmente, foi possível concluir que o estudo da teoria de cópulas é de grande relevância para a gestão de riscos financeiros. Fica a sugestão de que variações do modelo de VaR desenvolvido neste trabalho sejam testadas, e que esta teoria seja também aplicada à gestão de outros riscos, como o de crédito, operacional, e até mesmo o risco integrado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo deste trabalho foi mostrar modelagens alternativas à tradicional maneira de se apurar o risco de mercado para ativos financeiros brasileiros. Procurou-se cobrir o máximo possível de fatores de risco existentes no Brasil; para tanto utilizamos as principais proxies para instrumentos de Renda Fixa. Em momentos de volatilidade, o gerenciamento de risco de mercado é bastante criticado por trabalhar dentro de modelagens fundamentadas na distribuição normal. Aqui reside a maior contribuição do VaR e também a maior crítica a ele. Adicionado a isso, temos um mercado caracterizado pela extrema iliquidez no mercado secundário até mesmo em certos tipos de títulos públicos federais. O primeiro passo foi fazer um levantamento da produção acadêmica sobre o tema, seja no Brasil ou no mundo. Para a nossa surpresa, pouco, no nosso país, tem se falado em distribuições estáveis aplicadas ao mercado financeiro, seja em gerenciamento de risco, precificação de opções ou administração de carteiras. Após essa etapa, passamos a seleção das variáveis a serem utilizadas buscando cobrir uma grande parte dos ativos financeiros brasileiros. Assim, deveríamos identificar a presença ou não da condição de normalidade para, aí sim, realizarmos as modelagens das medidas de risco, VaR e ES, para os ativos escolhidos, As condições teóricas e práticas estavam criadas: demanda de mercado (crítica ao método gausiano bastante difundido), ampla cobertura de ativos (apesar do eventual questionamento da liquidez), experiência acadêmica e conhecimento internacional (por meio de detalhado e criterioso estudo da produção sobre o tema nos principais meios). Analisou-se, desta forma, quatro principais abordagens para o cálculo de medidas de risco sendo elas coerentes (ES) ou não (VaR). É importante mencionar que se trata de um trabalho que poderá servir de insumo inicial para trabalhos mais grandiosos, por exemplo, aqueles que incorporarem vários ativos dentro de uma carteira de riscos lineares ou, até mesmo, para ativos que apresentem risco não-direcionais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Value at Risk (VaR) e Expected Shortfall (ES) são modelos quantitativos para mensuração do risco de mercado em carteiras de ativos financeiros. O propósito deste trabalho é avaliar os resultados de tais modelos para ativos negociados no mercado brasileiro através de quatro metodologias de backtesting - Basel Traffic Light Test, Teste de Kupiec, Teste de Christoffersen e Teste de McNeil e Frey – abrangendo períodos de crise financeira doméstica (2002) e internacional (2008). O modelo de VaR aqui apresentado utilizou duas abordagens – Paramétrica Normal, onde se assume que a distribuição dos retornos dos ativos segue uma Normal, e Simulação Histórica, onde não há hipótese a respeito da distribuição dos retornos dos ativos, porém assume-se que os mesmos são independentes e identicamente distribuídos. Também foram avaliados os resultados do VaR com a expansão de Cornish-Fisher, a qual visa aproximar a distribuição empírica a uma distribuição Normal utilizando os valores de curtose e assimetria para tal. Outra característica observada foi a propriedade de coerência, a qual avalia se a medida de risco obedece a quatro axiomas básicos – monotonicidade, invariância sob translações, homogeneidade e subaditividade. O VaR não é considerado uma medida de risco coerente, pois não apresenta a característica de subaditividade em todos os casos. Por outro lado o ES obedece aos quatro axiomas, considerado assim uma medida coerente. O modelo de ES foi avaliado segundo a abordagem Paramétrica Normal. Neste trabalho também se verificou através dos backtests, o quanto a propriedade de coerência de uma medida de risco melhora sua precisão.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competitive Strategy literature predicts three different mechanisms of performance generation, thus distinguishing between firms that have competitive advantage, firms that have competitive disadvantage or firms that have neither. Nonetheless, previous works in the field have fitted a single normal distribution to model firm performance. Here, we develop a new approach that distinguishes among performance generating mechanisms and allows the identification of firms with competitive advantage or disadvantage. Theorizing on the positive feedback loops by which firms with competitive advantage have facilitated access to acquire new resources, we proposed a distribution we believe data on firm performance should follow. We illustrate our model by assessing its fit to data on firm performance, addressing its theoretical implications and comparing it to previous works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O estudo teve como objetivo avaliar a capacidade preditiva dos modelos de estimação do risco de mercado em momentos de crises financeiras. Para isso, foram testados modelos de estimação do Value-at-Risk (VaR) aplicados aos retornos diários de carteiras compostas por índices de ações de países desenvolvidos e emergentes. Foram testados o modelo VaR de Simulação Histórica, modelos ARCH multivariados (Bekk, Vech e CCC), Redes Neurais Artificiais e funções Cópulas. A amostra de dados refere-se aos períodos de duas crises financeiras internacionais, Crise Asiática, de 1997, e Crise do Sub Prime dos EUA, de 2008. Os resultados apontaram que os modelos ARCH multivariados (Vech e Bekk) e Cópula - Clayton tiveram desempenho semelhantes, com bons ajustes em 100% dos testes. Diferentemente do que era esperado, não foi possível perceber diferenças significativas entre os ajustes para países desenvolvidos e emergentes e os momentos de crise e normal.