7 resultados para Normal distribution
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Competitive Strategy literature predicts three different mechanisms of performance generation, thus distinguishing between firms that have competitive advantage, firms that have competitive disadvantage or firms that have neither. Nonetheless, previous works in the field have fitted a single normal distribution to model firm performance. Here, we develop a new approach that distinguishes among performance generating mechanisms and allows the identification of firms with competitive advantage or disadvantage. Theorizing on the positive feedback loops by which firms with competitive advantage have facilitated access to acquire new resources, we proposed a distribution we believe data on firm performance should follow. We illustrate our model by assessing its fit to data on firm performance, addressing its theoretical implications and comparing it to previous works.
Resumo:
This paper proposes unit tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adptive estimation using nonparametric methods. The limiting distribution of the proposed test is a combination of standard normal and the traditional Dickey-Fuller (DF) distribution, including the traditional ADF test as a special case when using Gaussian density. Taking into a account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, wich includes te normal distribution as a limiting case. Monte Carlo Experiments indicate that, in the presence of heavy tail distributions or innovations that are contaminated by outliers, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit roots is not found in real exchange rate and nominal interest rate even haevy-tail is taken into a account.
Resumo:
Dentre os principais desafios enfrentados no cálculo de medidas de risco de portfólios está em como agregar riscos. Esta agregação deve ser feita de tal sorte que possa de alguma forma identificar o efeito da diversificação do risco existente em uma operação ou em um portfólio. Desta forma, muito tem se feito para identificar a melhor forma para se chegar a esta definição, alguns modelos como o Valor em Risco (VaR) paramétrico assumem que a distribuição marginal de cada variável integrante do portfólio seguem a mesma distribuição , sendo esta uma distribuição normal, se preocupando apenas em modelar corretamente a volatilidade e a matriz de correlação. Modelos como o VaR histórico assume a distribuição real da variável e não se preocupam com o formato da distribuição resultante multivariada. Assim sendo, a teoria de Cópulas mostra-se um grande alternativa, à medida que esta teoria permite a criação de distribuições multivariadas sem a necessidade de se supor qualquer tipo de restrição às distribuições marginais e muito menos as multivariadas. Neste trabalho iremos abordar a utilização desta metodologia em confronto com as demais metodologias de cálculo de Risco, a saber: VaR multivariados paramétricos - VEC, Diagonal,BEKK, EWMA, CCC e DCC- e VaR histórico para um portfólio resultante de posições idênticas em quatro fatores de risco – Pre252, Cupo252, Índice Bovespa e Índice Dow Jones
Resumo:
Este trabalho examinou as características de carteiras compostas por ações e otimizadas segundo o critério de média-variância e formadas através de estimativas robustas de risco e retorno. A motivação para isto é a distribuição típica de ativos financeiros (que apresenta outliers e mais curtose que a distribuição normal). Para comparação entre as carteiras, foram consideradas suas propriedades: estabilidade, variabilidade e os índices de Sharpe obtidos pelas mesmas. O resultado geral mostra que estas carteiras obtidas através de estimativas robustas de risco e retorno apresentam melhoras em sua estabilidade e variabilidade, no entanto, esta melhora é insuficiente para diferenciar os índices de Sharpe alcançados pelas mesmas das carteiras obtidas através de método de máxima verossimilhança para estimativas de risco e retorno.
Resumo:
A pesquisa objetivou testar se a distribuição hiperbólica de Barndorff-Nielsen constitui representação adequada da distribuição de retornos no mercado acionário brasileiro. Foram considerados os retornos diários do Índice Bovespa e de 30 ações individuais, no período de 30 de junho de 1994 a 31 de dezembro de 1999 e em três subperíodos seus. Os resultados indicam que a distribuição hiperbólica constitui boa representação dos retornos do Índice Bovespa, tanto para o período global como para os três subperíodos, e constitui melhora substancial em relação à distribuição normal. Para as 30 ações analisadas, contudo, os resultados não são inequívocos. A depender do período considerado, a proporção de ações para as quais a distribuição hiperbólica se mostra adequada é variável - de um mínimo de 30 por cento a um máximo de 75 por cento. Mesmo no caso do Índice Bovespa, entretanto, a distribuição hiperbólica não parece captar retornos extremos.
Resumo:
This paper uses a multivariate response surface methodology to analyze the size distortion of the BDS test when applied to standardized residuals of rst-order GARCH processes. The results show that the asymptotic standard normal distribution is an unreliable approximation, even in large samples. On the other hand, a simple log-transformation of the squared standardized residuals seems to correct most of the size problems. Nonethe-less, the estimated response surfaces can provide not only a measure of the size distortion, but also more adequate critical values for the BDS test in small samples.
Resumo:
This dissertation presents two papers on how to deal with simple systemic risk measures to assess portfolio risk characteristics. The first paper deals with the Granger-causation of systemic risk indicators based in correlation matrices in stock returns. Special focus is devoted to the Eigenvalue Entropy as some previous literature indicated strong re- sults, but not considering different macroeconomic scenarios; the Index Cohesion Force and the Absorption Ratio are also considered. Considering the S&P500, there is not ev- idence of Granger-causation from Eigenvalue Entropies and the Index Cohesion Force. The Absorption Ratio Granger-caused both the S&P500 and the VIX index, being the only simple measure that passed this test. The second paper develops this measure to capture the regimes underlying the American stock market. New indicators are built using filtering and random matrix theory. The returns of the S&P500 is modelled as a mixture of normal distributions. The activation of each normal distribution is governed by a Markov chain with the transition probabilities being a function of the indicators. The model shows that using a Herfindahl-Hirschman Index of the normalized eigenval- ues exhibits best fit to the returns from 1998-2013.