2 resultados para Nonlinear hyperbolic equation
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
This work adds to Lucas (2000) by providing analytical solutions to two problems that are solved only numerically by the author. The first part uses a theorem in control theory (Arrow' s sufficiency theorem) to provide sufficiency conditions to characterize the optimum in a shopping-time problem where the value function need not be concave. In the original paper the optimality of the first-order condition is characterized only by means of a numerical analysis. The second part of the paper provides a closed-form solution to the general-equilibrium expression of the welfare costs of inflation when the money demand is double logarithmic. This closed-form solution allows for the precise calculation of the difference between the general-equilibrium and Bailey's partial-equilibrium estimates of the welfare losses due to inflation. Again, in Lucas's original paper, the solution to the general-equilibrium-case underlying nonlinear differential equation is done only numerically, and the posterior assertion that the general-equilibrium welfare figures cannot be distinguished from those derived using Bailey's formula rely only on numerical simulations as well.
Resumo:
The objective of this paper is to test for optimality of consumption decisions at the aggregate level (representative consumer) taking into account popular deviations from the canonical CRRA utility model rule of thumb and habit. First, we show that rule-of-thumb behavior in consumption is observational equivalent to behavior obtained by the optimizing model of King, Plosser and Rebelo (Journal of Monetary Economics, 1988), casting doubt on how reliable standard rule-of-thumb tests are. Second, although Carroll (2001) and Weber (2002) have criticized the linearization and testing of euler equations for consumption, we provide a deeper critique directly applicable to current rule-of-thumb tests. Third, we show that there is no reason why return aggregation cannot be performed in the nonlinear setting of the Asset-Pricing Equation, since the latter is a linear function of individual returns. Fourth, aggregation of the nonlinear euler equation forms the basis of a novel test of deviations from the canonical CRRA model of consumption in the presence of rule-of-thumb and habit behavior. We estimated 48 euler equations using GMM, with encouraging results vis-a-vis the optimality of consumption decisions. At the 5% level, we only rejected optimality twice out of 48 times. Empirical-test results show that we can still rely on the canonical CRRA model so prevalent in macroeconomics: out of 24 regressions, we found the rule-of-thumb parameter to be statistically signi cant at the 5% level only twice, and the habit ƴ parameter to be statistically signi cant on four occasions. The main message of this paper is that proper return aggregation is critical to study intertemporal substitution in a representative-agent framework. In this case, we fi nd little evidence of lack of optimality in consumption decisions, and deviations of the CRRA utility model along the lines of rule-of-thumb behavior and habit in preferences represent the exception, not the rule.