5 resultados para Non-linear series
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
We study the optimal “inflation tax” in an environment with heterogeneous agents and non-linear income taxes. We first derive the general conditions needed for the optimality of the Friedman rule in this setup. These general conditions are distinct in nature and more easily interpretable than those obtained in the literature with a representative agent and linear taxation. We then study two standard monetary specifications and derive their implications for the optimality of the Friedman rule. For the shopping-time model the Friedman rule is optimal with essentially no restrictions on preferences or transaction technologies. For the cash-credit model the Friedman rule is optimal if preferences are separable between the consumption goods and leisure, or if leisure shifts consumption towards the credit good. We also study a generalized model which nests both models as special cases.
Resumo:
We evaluate the forecasting performance of a number of systems models of US shortand long-term interest rates. Non-linearities, induding asymmetries in the adjustment to equilibrium, are shown to result in more accurate short horizon forecasts. We find that both long and short rates respond to disequilibria in the spread in certain circumstances, which would not be evident from linear representations or from single-equation analyses of the short-term interest rate.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.
Resumo:
O trabalho tem como objetivo aplicar uma modelagem não linear ao Produto Interno Bruto brasileiro. Para tanto foi testada a existência de não linearidade do processo gerador dos dados com a metodologia sugerida por Castle e Henry (2010). O teste consiste em verificar a persistência dos regressores não lineares no modelo linear irrestrito. A seguir a série é modelada a partir do modelo autoregressivo com limiar utilizando a abordagem geral para específico na seleção do modelo. O algoritmo Autometrics é utilizado para escolha do modelo não linear. Os resultados encontrados indicam que o Produto Interno Bruto do Brasil é melhor explicado por um modelo não linear com três mudanças de regime, que ocorrem no inicio dos anos 90, que, de fato, foi um período bastante volátil. Através da modelagem não linear existe o potencial para datação de ciclos, no entanto os resultados encontrados não foram suficientes para tal análise.
Resumo:
This paper presents new methodology for making Bayesian inference about dy~ o!s for exponential famiIy observations. The approach is simulation-based _~t> use of ~vlarkov chain Monte Carlo techniques. A yletropolis-Hastings i:U~UnLlllll 1::; combined with the Gibbs sampler in repeated use of an adjusted version of normal dynamic linear models. Different alternative schemes are derived and compared. The approach is fully Bayesian in obtaining posterior samples for state parameters and unknown hyperparameters. Illustrations to real data sets with sparse counts and missing values are presented. Extensions to accommodate for general distributions for observations and disturbances. intervention. non-linear models and rnultivariate time series are outlined.