3 resultados para Neural networks model
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
In this paper, we propose a class of ACD-type models that accommodates overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries in financial durations. In particular, our functional coefficient autoregressive conditional duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The motivation lies on the fact that the latter yields a universal approximation if one lets the number of regimes grows without bound. After establishing that the sufficient conditions for strict stationarity do not exclude explosive regimes, we address model identifiability as well as the existence, consistency, and asymptotic normality of the quasi-maximum likelihood (QML) estimator for the FC-ACD model with a fixed number of regimes. In addition, we also discuss how to consistently estimate using a sieve approach a semiparametric variant of the FC-ACD model that takes the number of regimes to infinity. An empirical illustration indicates that our functional coefficient model is flexible enough to model IBM price durations.
Resumo:
Esse trabalho comparou, para condições macroeconômicas usuais, a eficiência do modelo de Redes Neurais Artificiais (RNAs) otimizadas por Algoritmos Genéticos (AGs) na precificação de opções de Dólar à Vista aos seguintes modelos de precificação convencionais: Black-Scholes, Garman-Kohlhagen, Árvores Trinomiais e Simulações de Monte Carlo. As informações utilizadas nesta análise, compreendidas entre janeiro de 1999 e novembro de 2006, foram disponibilizadas pela Bolsa de Mercadorias e Futuros (BM&F) e pelo Federal Reserve americano. As comparações e avaliações foram realizadas com o software MATLAB, versão 7.0, e suas respectivas caixas de ferramentas que ofereceram o ambiente e as ferramentas necessárias à implementação e customização dos modelos mencionados acima. As análises do custo do delta-hedging para cada modelo indicaram que, apesar de mais complexa, a utilização dos Algoritmos Genéticos exclusivamente para otimização direta (binária) dos pesos sinápticos das Redes Neurais não produziu resultados significativamente superiores aos modelos convencionais.
Resumo:
Este trabalho tem por motivação evidenciar a eficiência de redes neurais na classificação de rentabilidade futura de empresas, e desta forma, prover suporte para o desenvolvimento de sistemas de apoio a tomada de decisão de investimentos. Para serem comparados com o modelo de redes neurais, foram escolhidos o modelo clássico de regressão linear múltipla, como referência mínima, e o de regressão logística ordenada, como marca comparativa de desempenho (benchmark). Neste texto, extraímos dados financeiros e contábeis das 1000 melhores empresas listadas, anualmente, entre 1996 e 2006, na publicação Melhores e Maiores – Exame (Editora Abril). Os três modelos foram construídos tendo como base as informações das empresas entre 1996 e 2005. Dadas as informações de 2005 para estimar a classificação das empresas em 2006, os resultados dos três modelos foram comparados com as classificações observadas em 2006, e o modelo de redes neurais gerou o melhor resultado.