11 resultados para NON-LINEAR MODELS
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
We study the optimal “inflation tax” in an environment with heterogeneous agents and non-linear income taxes. We first derive the general conditions needed for the optimality of the Friedman rule in this setup. These general conditions are distinct in nature and more easily interpretable than those obtained in the literature with a representative agent and linear taxation. We then study two standard monetary specifications and derive their implications for the optimality of the Friedman rule. For the shopping-time model the Friedman rule is optimal with essentially no restrictions on preferences or transaction technologies. For the cash-credit model the Friedman rule is optimal if preferences are separable between the consumption goods and leisure, or if leisure shifts consumption towards the credit good. We also study a generalized model which nests both models as special cases.
Resumo:
We evaluate the forecasting performance of a number of systems models of US shortand long-term interest rates. Non-linearities, induding asymmetries in the adjustment to equilibrium, are shown to result in more accurate short horizon forecasts. We find that both long and short rates respond to disequilibria in the spread in certain circumstances, which would not be evident from linear representations or from single-equation analyses of the short-term interest rate.
Resumo:
O presente texto desenvolve, com fins didáticos, as aplicações do Método Generalizado dos Momentos (MGM) ao procedimento de variáveis instrumentais, em modelos lineares e não-lineares. Faz parte de obra (livro) em elaboração
Resumo:
This paper presents new methodology for making Bayesian inference about dy~ o!s for exponential famiIy observations. The approach is simulation-based _~t> use of ~vlarkov chain Monte Carlo techniques. A yletropolis-Hastings i:U~UnLlllll 1::; combined with the Gibbs sampler in repeated use of an adjusted version of normal dynamic linear models. Different alternative schemes are derived and compared. The approach is fully Bayesian in obtaining posterior samples for state parameters and unknown hyperparameters. Illustrations to real data sets with sparse counts and missing values are presented. Extensions to accommodate for general distributions for observations and disturbances. intervention. non-linear models and rnultivariate time series are outlined.
Resumo:
Whether human capital increases or decreases wage uncertainty is an open ques- tion from an empirical standpoint. Yet, most policy prescriptions regarding human capital formation are based on models that impose riskiness on this type of invest- ment. We slightly deviate from the rest of the literature by allowing for non-linear income taxes in a two period model. This enables us to derive prescriptions that are robust to the risk characteristics of human capital: savings should be discouraged, human capital investments encouraged and both types of investment driven to an e¢ cient level from an aggregate perspective. These prescriptions are also robust to what choices are observed, even though the policy instruments used to implement them are not.
Resumo:
Estudos recentes apontam que diversas estratégias implementadas em hedge funds geram retornos com características não lineares. Seguindo as sugestões encontradas no paper de Agarwal e Naik (2004), este trabalho mostra que uma série de hedge funds dentro da indústria de fundos de investimentos no Brasil apresenta retornos que se assemelham ao de uma estratégia em opções de compra e venda no índice de mercado Bovespa. Partindo de um modelo de fatores, introduzimos um índice referenciado no retorno sobre opções de modo que tal fator possa explicar melhor que os tradicionais fatores de risco a característica não linear dos retornos dos fundos de investimento.
Resumo:
In this study, we verify the existence of predictability in the Brazilian equity market. Unlike other studies in the same sense, which evaluate original series for each stock, we evaluate synthetic series created on the basis of linear models of stocks. Following Burgess (1999), we use the “stepwise regression” model for the formation of models of each stock. We then use the variance ratio profile together with a Monte Carlo simulation for the selection of models with potential predictability. Unlike Burgess (1999), we carry out White’s Reality Check (2000) in order to verify the existence of positive returns for the period outside the sample. We use the strategies proposed by Sullivan, Timmermann & White (1999) and Hsu & Kuan (2005) amounting to 26,410 simulated strategies. Finally, using the bootstrap methodology, with 1,000 simulations, we find strong evidence of predictability in the models, including transaction costs.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.
Resumo:
O aumento da complexidade do mercado financeiro tem sido relatado por Rajan (2005), Gorton (2008) e Haldane e May (2011) como um dos principais fatores responsáveis pelo incremento do risco sistêmico que culminou na crise financeira de 2007/08. O Bank for International Settlements (2013) aborda a questão da complexidade no contexto da regulação bancária e discute a comparabilidade da adequação de capital entre os bancos e entre jurisdições. No entanto, as definições dos conceitos de complexidade e de sistemas adaptativos complexos são suprimidas das principais discussões. Este artigo esclarece alguns conceitos relacionados às teorias da Complexidade, como se dá a emergência deste fenômeno, como os conceitos podem ser aplicados ao mercado financeiro. São discutidas duas ferramentas que podem ser utilizadas no contexto de sistemas adaptativos complexos: Agent Based Models (ABMs) e entropia e comparadas com ferramentas tradicionais. Concluímos que ainda que a linha de pesquisa da complexidade deixe lacunas, certamente esta contribui com a agenda de pesquisa econômica para se compreender os mecanismos que desencadeiam riscos sistêmicos, bem como adiciona ferramentas que possibilitam modelar agentes heterogêneos que interagem, de forma a permitir o surgimento de fenômenos emergentes no sistema. Hipóteses de pesquisa são sugeridas para aprofundamento posterior.
Resumo:
In the first essay, "Determinants of Credit Expansion in Brazil", analyzes the determinants of credit using an extensive bank level panel dataset. Brazilian economy has experienced a major boost in leverage in the first decade of 2000 as a result of a set factors ranging from macroeconomic stability to the abundant liquidity in international financial markets before 2008 and a set of deliberate decisions taken by President Lula's to expand credit, boost consumption and gain political support from the lower social strata. As relevant conclusions to our investigation we verify that: credit expansion relied on the reduction of the monetary policy rate, international financial markets are an important source of funds, payroll-guaranteed credit and investment grade status affected positively credit supply. We were not able to confirm the importance of financial inclusion efforts. The importance of financial sector sanity indicators of credit conditions cannot be underestimated. These results raise questions over the sustainability of this expansion process and financial stability in the future. The second essay, “Public Credit, Monetary Policy and Financial Stability”, discusses the role of public credit. The supply of public credit in Brazil has successfully served to relaunch the economy after the Lehman-Brothers demise. It was later transformed into a driver for economic growth as well as a regulation device to force private banks to reduce interest rates. We argue that the use of public funds to finance economic growth has three important drawbacks: it generates inflation, induces higher loan rates and may induce financial instability. An additional effect is the prevention of market credit solutions. This study contributes to the understanding of the costs and benefits of credit as a fiscal policy tool. The third essay, “Bayesian Forecasting of Interest Rates: Do Priors Matter?”, discusses the choice of priors when forecasting short-term interest rates. Central Banks that commit to an Inflation Target monetary regime are bound to respond to inflation expectation spikes and product hiatus widening in a clear and transparent way by abiding to a Taylor rule. There are various reports of central banks being more responsive to inflationary than to deflationary shocks rendering the monetary policy response to be indeed non-linear. Besides that there is no guarantee that coefficients remain stable during time. Central Banks may switch to a dual target regime to consider deviations from inflation and the output gap. The estimation of a Taylor rule may therefore have to consider a non-linear model with time varying parameters. This paper uses Bayesian forecasting methods to predict short-term interest rates. We take two different approaches: from a theoretic perspective we focus on an augmented version of the Taylor rule and include the Real Exchange Rate, the Credit-to-GDP and the Net Public Debt-to-GDP ratios. We also take an ”atheoretic” approach based on the Expectations Theory of the Term Structure to model short-term interest. The selection of priors is particularly relevant for predictive accuracy yet, ideally, forecasting models should require as little a priori expert insight as possible. We present recent developments in prior selection, in particular we propose the use of hierarchical hyper-g priors for better forecasting in a framework that can be easily extended to other key macroeconomic indicators.