10 resultados para Multivariate risk model

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article develops an econometric model in order to study country risk behavior for six emerging economies (Argentina, Mexico, Russia, Thailand, Korea and Indonesia), by expanding the Country Beta Risk Model of Harvey and Zhou (1993), Erb et. al. (1996a, 1996b) and Gangemi et. al. (2000). Toward this end, we have analyzed the impact of macroeconomic variables, especially monetary policy, upon country risk, by way of a time varying parameter approach. The results indicate an inefficient and unstable effect of monetary policy upon country risk in periods of crisis. However, this effect is stable in other periods, and the Favero-Giavazzi effect is not verified for all economies, with an opposite effect being observed in many cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta dissertação desenvolve um estudo sobre o risco operacional nas tesourarias bancárias e tem por objetivo elaborar um modelo explicativo do impacto desse fenômeno no resultado da tesouraria. O estudo inicia com uma pesquisa dos modelos de firma bancária presentes na literatura especializada, visando conhecer o estado da arte da modelagem desse tipo de organização. Em seguida, é caracterizada a tesouraria bancária, com o objetivo de identificar seu papel e importância para a organização bancária. Na seqüência, o trabalho apresenta o conceito geral de risco e a classificação utilizada pela indústria financeira e também disserta sobre o risco operacional e sua importância para o gerenciamento dos bancos. Ao final do estudo, é desenvolvido o modelo de risco operacional em tesouraria e demonstrada sua influência no resultado final da tesouraria. Como conclusão geral, verifica-se que maiores probabilidades de ocorrência de falhas operacionais estão associadas a menor eficiência da tesouraria, com conseqüente impacto negativo no resultado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, many central banks have adopted inflation targeting policies starting an intense debate about which measure of inflation to adopt. The literature on core inflation has tried to develop indicators of inflation which would respond only to "significant" changes in inflation. This paper defines a measure of core inflation as the common trend of prices in a multivariate dynamic model, that has, by construction, three properties: it filters idiosyncratic and transitory macro noises, and it leads the future leveI of headline inflation. We also show that the popular trimmed mean estimator of core inflation could be regarded as a proxy for the ideal GLS estimator for heteroskedastic data. We employ an asymmetric trimmed mean estimator to take account of possible skewness of the distribution, and we obtain an unconditional measure of core inflation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Regular vine copulas are multivariate dependence models constructed from pair-copulas (bivariate copulas). In this paper, we allow the dependence parameters of the pair-copulas in a D-vine decomposition to be potentially time-varying, following a nonlinear restricted ARMA(1,m) process, in order to obtain a very flexible dependence model for applications to multivariate financial return data. We investigate the dependence among the broad stock market indexes from Germany (DAX), France (CAC 40), Britain (FTSE 100), the United States (S&P 500) and Brazil (IBOVESPA) both in a crisis and in a non-crisis period. We find evidence of stronger dependence among the indexes in bear markets. Surprisingly, though, the dynamic D-vine copula indicates the occurrence of a sharp decrease in dependence between the indexes FTSE and CAC in the beginning of 2011, and also between CAC and DAX during mid-2011 and in the beginning of 2008, suggesting the absence of contagion in these cases. We also evaluate the dynamic D-vine copula with respect to Value-at-Risk (VaR) forecasting accuracy in crisis periods. The dynamic D-vine outperforms the static D-vine in terms of predictive accuracy for our real data sets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When the joint assumption of optimal risk sharing and coincidence of beliefs is added to the collective model of Browning and Chiappori (1998) income pooling and symmetry of the pseudo-Hicksian matrix are shown to be restored. Because these are also the features of the unitary model usually rejected in empirical studies one may argue that these assumptions are at odds with evidence. We argue that this needs not be the case. The use of cross-section data to generate price and income variation is based Oil a definition of income pooling or symmetry suitable for testing the unitary model, but not the collective model with risk sharing. AIso, by relaxing assumptions on beliefs, we show that symmetry and income pooling is lost. However, with usual assumptions on existence of assignable goods, we show that beliefs are identifiable. More importantly, if di:fferences in beliefs are not too extreme, the risk sharing hypothesis is still testable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known that cointegration between the level of two variables (e.g. prices and dividends) is a necessary condition to assess the empirical validity of a present-value model (PVM) linking them. The work on cointegration,namelyon long-run co-movements, has been so prevalent that it is often over-looked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. This amounts to investigate whether short-run co-movememts steming from common cyclical feature restrictions are also present in such a system. In this paper we test for the presence of such co-movement on long- and short-term interest rates and on price and dividend for the U.S. economy. We focuss on the potential improvement in forecasting accuracies when imposing those two types of restrictions coming from economic theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper has two original contributions. First, we show that the present value model (PVM hereafter), which has a wide application in macroeconomics and fi nance, entails common cyclical feature restrictions in the dynamics of the vector error-correction representation (Vahid and Engle, 1993); something that has been already investigated in that VECM context by Johansen and Swensen (1999, 2011) but has not been discussed before with this new emphasis. We also provide the present value reduced rank constraints to be tested within the log-linear model. Our second contribution relates to forecasting time series that are subject to those long and short-run reduced rank restrictions. The reason why appropriate common cyclical feature restrictions might improve forecasting is because it finds natural exclusion restrictions preventing the estimation of useless parameters, which would otherwise contribute to the increase of forecast variance with no expected reduction in bias. We applied the techniques discussed in this paper to data known to be subject to present value restrictions, i.e. the online series maintained and up-dated by Shiller. We focus on three different data sets. The fi rst includes the levels of interest rates with long and short maturities, the second includes the level of real price and dividend for the S&P composite index, and the third includes the logarithmic transformation of prices and dividends. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to them. Moreover, imposing short-run restrictions produce forecast winners 70% of the time for target variables of PVMs and 63.33% of the time when all variables in the system are considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O objetivo deste estudo é propor a implementação de um modelo estatístico para cálculo da volatilidade, não difundido na literatura brasileira, o modelo de escala local (LSM), apresentando suas vantagens e desvantagens em relação aos modelos habitualmente utilizados para mensuração de risco. Para estimação dos parâmetros serão usadas as cotações diárias do Ibovespa, no período de janeiro de 2009 a dezembro de 2014, e para a aferição da acurácia empírica dos modelos serão realizados testes fora da amostra, comparando os VaR obtidos para o período de janeiro a dezembro de 2014. Foram introduzidas variáveis explicativas na tentativa de aprimorar os modelos e optou-se pelo correspondente americano do Ibovespa, o índice Dow Jones, por ter apresentado propriedades como: alta correlação, causalidade no sentido de Granger, e razão de log-verossimilhança significativa. Uma das inovações do modelo de escala local é não utilizar diretamente a variância, mas sim a sua recíproca, chamada de “precisão” da série, que segue uma espécie de passeio aleatório multiplicativo. O LSM captou todos os fatos estilizados das séries financeiras, e os resultados foram favoráveis a sua utilização, logo, o modelo torna-se uma alternativa de especificação eficiente e parcimoniosa para estimar e prever volatilidade, na medida em que possui apenas um parâmetro a ser estimado, o que representa uma mudança de paradigma em relação aos modelos de heterocedasticidade condicional.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a sequence of nested multivariate models that are VAR-based, we discuss different layers of restrictions imposed by present-value models (PVM hereafter) on the VAR in levels for series that are subject to present-value restrictions. Our focus is novel - we are interested in the short-run restrictions entailed by PVMs (Vahid and Engle, 1993, 1997) and their implications for forecasting. Using a well-known database, kept by Robert Shiller, we implement a forecasting competition that imposes different layers of PVM restrictions. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to the unrestricted VAR. Moreover, imposing short-run restrictions produces forecast winners 70% of the time for the target variables of PVMs and 63.33% of the time when all variables in the system are considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop an affine jump diffusion (AJD) model with the jump-risk premium being determined by both idiosyncratic and systematic sources of risk. While we maintain the classical affine setting of the model, we add a finite set of new state variables that affect the paths of the primitive, under both the actual and the risk-neutral measure, by being related to the primitive's jump process. Those new variables are assumed to be commom to all the primitives. We present simulations to ensure that the model generates the volatility smile and compute the "discounted conditional characteristic function'' transform that permits the pricing of a wide range of derivatives.