4 resultados para Multivariate data
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Although there has been substantial research on long-run co-movement (common trends) in the empirical macroeconomics literature. little or no work has been done on short run co-movement (common cycles). Investigating common cycles is important on two grounds: first. their existence is an implication of most dynamic macroeconomic models. Second. they impose important restrictions on dynamic systems. Which can be used for efficient estimation and forecasting. In this paper. using a methodology that takes into account short- and long-run co-movement restrictions. we investigate their existence in a multivariate data set containing U.S. per-capita output. consumption. and investment. As predicted by theory. the data have common trends and common cycles. Based on the results of a post-sample forecasting comparison between restricted and unrestricted systems. we show that a non-trivial loss of efficiency results when common cycles are ignored. If permanent shocks are associated with changes in productivity. the latter fails to be an important source of variation for output and investment contradicting simple aggregate dynamic models. Nevertheless. these shocks play a very important role in explaining the variation of consumption. Showing evidence of smoothing. Furthermore. it seems that permanent shocks to output play a much more important role in explaining unemployment fluctuations than previously thought.
Resumo:
Reduced form estimation of multivariate data sets currently takes into account long-run co-movement restrictions by using Vector Error Correction Models (VECM' s). However, short-run co-movement restrictions are completely ignored. This paper proposes a way of taking into account short-and long-run co-movement restrictions in multivariate data sets, leading to efficient estimation of VECM' s. It enables a more precise trend-cycle decomposition of the data which imposes no untested restrictions to recover these two components. The proposed methodology is applied to a multivariate data set containing U.S. per-capita output, consumption and investment Based on the results of a post-sample forecasting comparison between restricted and unrestricted VECM' s, we show that a non-trivial loss of efficiency results whenever short-run co-movement restrictions are ignored. While permanent shocks to consumption still play a very important role in explaining consumption’s variation, it seems that the improved estimates of trends and cycles of output, consumption, and investment show evidence of a more important role for transitory shocks than previously suspected. Furthermore, contrary to previous evidence, it seems that permanent shocks to output play a much more important role in explaining unemployment fluctuations.
Resumo:
The aim of this paper is to test whether or not there was evidence of contagion across the various financial crises that assailed some countries in the 1990s. Data on sovereign debt bonds for Brazil, Mexico, Russia and Argentina were used to implement the test. The contagion hypothesis is tested using multivariate volatility models. If there is any evidence of structural break in volatility that can be linked to financial crises, the contagion hypothesis will be confirmed. Results suggest that there is evidence in favor of the contagion hypothesis.
Resumo:
This paper has two original contributions. First, we show that the present value model (PVM hereafter), which has a wide application in macroeconomics and fi nance, entails common cyclical feature restrictions in the dynamics of the vector error-correction representation (Vahid and Engle, 1993); something that has been already investigated in that VECM context by Johansen and Swensen (1999, 2011) but has not been discussed before with this new emphasis. We also provide the present value reduced rank constraints to be tested within the log-linear model. Our second contribution relates to forecasting time series that are subject to those long and short-run reduced rank restrictions. The reason why appropriate common cyclical feature restrictions might improve forecasting is because it finds natural exclusion restrictions preventing the estimation of useless parameters, which would otherwise contribute to the increase of forecast variance with no expected reduction in bias. We applied the techniques discussed in this paper to data known to be subject to present value restrictions, i.e. the online series maintained and up-dated by Shiller. We focus on three different data sets. The fi rst includes the levels of interest rates with long and short maturities, the second includes the level of real price and dividend for the S&P composite index, and the third includes the logarithmic transformation of prices and dividends. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to them. Moreover, imposing short-run restrictions produce forecast winners 70% of the time for target variables of PVMs and 63.33% of the time when all variables in the system are considered.