5 resultados para Multilinear polynomial

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parametric term structure models have been successfully applied to innumerous problems in fixed income markets, including pricing, hedging, managing risk, as well as studying monetary policy implications. On their turn, dynamic term structure models, equipped with stronger economic structure, have been mainly adopted to price derivatives and explain empirical stylized facts. In this paper, we combine flavors of those two classes of models to test if no-arbitrage affects forecasting. We construct cross section (allowing arbitrages) and arbitrage-free versions of a parametric polynomial model to analyze how well they predict out-of-sample interest rates. Based on U.S. Treasury yield data, we find that no-arbitrage restrictions significantly improve forecasts. Arbitrage-free versions achieve overall smaller biases and Root Mean Square Errors for most maturities and forecasting horizons. Furthermore, a decomposition of forecasts into forward-rates and holding return premia indicates that the superior performance of no-arbitrage versions is due to a better identification of bond risk premium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aims to study the macroeconomic factors influence in credit risk for installment autoloans operations. The study is based on 4.887 credit operations surveyed in the Credit Risk Information System (SCR) hold by the Brazilian Central Bank. Using Survival Analysis applied to interval censured data, we achieved a model to estimate the hazard function and we propose a method for calculating the probability of default in a twelve month period. Our results indicate a strong time dependence for the hazard function by a polynomial approximation in all estimated models. The model with the best Akaike Information Criteria estimate a positive effect of 0,07% for males over de basic hazard function, and 0,011% for the increasing of ten base points on the operation annual interest rate, toward, for each R$ 1.000,00 on the installment, the hazard function suffer a negative effect of 0,28% , and an estimated elevation of 0,0069% for the same amount added to operation contracted value. For de macroeconomics factors, we find statistically significant effects for the unemployment rate (-0,12%) , for the one lag of the unemployment rate (0,12%), for the first difference of the industrial product index(-0,008%), for one lag of inflation rate (-0,13%) and for the exchange rate (-0,23%). We do not find statistic significant results for all other tested variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that cointegration between the level of two variables (labeled Yt and yt in this paper) is a necessary condition to assess the empirical validity of a present-value model (PV and PVM, respectively, hereafter) linking them. The work on cointegration has been so prevalent that it is often overlooked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. The basis of this result is the use of rational expectations in forecasting future values of variables in the PVM. If this condition fails, the present-value equation will not be valid, since it will contain an additional term capturing the (non-zero) conditional expected value of future error terms. Our article has a few novel contributions, but two stand out. First, in testing for PVMs, we advise to split the restrictions implied by PV relationships into orthogonality conditions (or reduced rank restrictions) before additional tests on the value of parameters. We show that PV relationships entail a weak-form common feature relationship as in Hecq, Palm, and Urbain (2006) and in Athanasopoulos, Guillén, Issler and Vahid (2011) and also a polynomial serial-correlation common feature relationship as in Cubadda and Hecq (2001), which represent restrictions on dynamic models which allow several tests for the existence of PV relationships to be used. Because these relationships occur mostly with nancial data, we propose tests based on generalized method of moment (GMM) estimates, where it is straightforward to propose robust tests in the presence of heteroskedasticity. We also propose a robust Wald test developed to investigate the presence of reduced rank models. Their performance is evaluated in a Monte-Carlo exercise. Second, in the context of asset pricing, we propose applying a permanent-transitory (PT) decomposition based on Beveridge and Nelson (1981), which focus on extracting the long-run component of asset prices, a key concept in modern nancial theory as discussed in Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Nieuwerburgh, Lustig, Verdelhan (2010). Here again we can exploit the results developed in the common cycle literature to easily extract permament and transitory components under both long and also short-run restrictions. The techniques discussed herein are applied to long span annual data on long- and short-term interest rates and on price and dividend for the U.S. economy. In both applications we do not reject the existence of a common cyclical feature vector linking these two series. Extracting the long-run component shows the usefulness of our approach and highlights the presence of asset-pricing bubbles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tese é composta de três artigos que analisam a estrutura a termo das taxas de juros usando diferentes bases de dados e modelos. O capítulo 1 propõe um modelo paramétrico de taxas de juros que permite a segmentação e choques locais na estrutura a termo. Adotando dados do tesouro americano, duas versões desse modelo segmentado são implementadas. Baseado em uma sequência de 142 experimentos de previsão, os modelos propostos são comparados à benchmarks e concluí-se que eles performam melhor nos resultados das previsões fora da amostra, especialmente para as maturidades curtas e para o horizonte de previsão de 12 meses. O capítulo 2 acrescenta restrições de não arbitragem ao estimar um modelo polinomial gaussiano dinâmico de estrutura a termo para o mercado de taxas de juros brasileiro. Esse artigo propõe uma importante aproximação para a série temporal dos fatores de risco da estrutura a termo, que permite a extração do prêmio de risco das taxas de juros sem a necessidade de otimização de um modelo dinâmico completo. Essa metodologia tem a vantagem de ser facilmente implementada e obtém uma boa aproximação para o prêmio de risco da estrutura a termo, que pode ser usada em diferentes aplicações. O capítulo 3 modela a dinâmica conjunta das taxas nominais e reais usando um modelo afim de não arbitagem com variáveis macroeconômicas para a estrutura a termo, afim de decompor a diferença entre as taxas nominais e reais em prêmio de risco de inflação e expectativa de inflação no mercado americano. Uma versão sem variáveis macroeconômicas e uma versão com essas variáveis são implementadas e os prêmios de risco de inflação obtidos são pequenos e estáveis no período analisado, porém possuem diferenças na comparação dos dois modelos analisados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho visa comparar, estatisticamente, o desempenho de duas estratégias de imunização de carteiras de renda fixa, que são recalibradas periodicamente. A primeira estratégia, duração, considera alterações no nível da estrutura a termo da taxa de juros brasileira, enquanto a abordagem alternativa tem como objetivo imunizar o portfólio contra oscilações em nível, inclinação e curvatura. Primeiro, estimamos a curva de juros a partir do modelo polinomial de Nelson & Siegel (1987) e Diebold & Li (2006). Segundo, imunizamos a carteira de renda fixa adotando o conceito de construção de hedge de Litterman & Scheinkman (1991), porém assumindo que as taxas de juros não são observadas. O portfólio imunizado pela estratégia alternativa apresenta empiricamente um desempenho estatisticamente superior ao procedimento de duração. Mostramos também que a frequência ótima de recalibragem é mensal na análise empírica.