22 resultados para Monte Carlo methods
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The rst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modied information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of tted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy reaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
Neste trabalho, analisamos utilizao da metodologia CreditRLsk+ do Credit Suisse sua adequao ao mercado brasileiro, com objetivo de calcular risco de uma carteira de crdito. Certas hipteses assumidas na formulao do modelo CreditRisk+ no valem para o mercado brasileiro, caracterizado, por exemplo, por uma elevada probabilidade de defcnilt. Desenvolvemos, ento, uma metodologia para clculo da distribuio de perdas atravs do mtodo de Simulao de Monte Cario, alterando algumas hipteses originais do modelo com objetivo de adapt-lo ao nosso mercado. utilizao de simulaes tambm oferece resultados mais precisos em situaes onde as carteiras possuem uma pequena populao de contratos, alm de eliminar possveis problemas de convergncia do mtodo analtico, mesmo considerando as hipteses do modelo original. Verifica-se ainda que tempo computacional pode ser menor que da metodologia original, principalmente em carteiras com elevado nmero de devedores de perfis distintos com alocaes em diversos setores da economia. Tendo em vista as restries acima, acreditamos que metodologia proposta seja uma alternativa para forma analtica do modelo CreditRisk+. Apresentamos exemplos de utilizao resultados providos por estas simulaes. ponto central deste trabalho realar importncia da utilizao de metodologias alternativas de medio de risco de crdito que incorporem as particularidades do mercado brasileiro.
Resumo:
O presente trabalho tem por objetivo descrever, avaliar comparar as metodologias analtica da simulao Monte Cario para clculo do Value at Risk (Valor em Risco) de instituies financeiras de empresas. Para comparar as vantagens desvantagens de cada metodologia, efetuaremos comparaes algbricas realizamos diversos testes empricos com instituies hipotticas que apresentassem diferentes nveis de alavancagem de composio em seus balanos, que operassem em diferentes mercados (consideramos os mercados de aes, de opes de compra de ttulos de renda fixa prefixados).
Resumo:
Trata da aplicabilidade da Simulao de Monte Carlo para a anlise de riscos e, conseqentemente, o apoio deciso de investir ou no em um projeto. So abordados mtodos de anlise de riscos e seleo de projetos, bem como a natureza, vantagens e limitaes da Simulao de Monte Caro. Por fim este instrumento tem sua viabilidade analisada sob a luz do processo de anlise de riscos de uma empresa brasileira.
Resumo:
Despite the commonly held belief that aggregate data display short-run comovement, there has been little discussion about the econometric consequences of this feature of the data. We use exhaustive Monte-Carlo simulations to investigate the importance of restrictions implied by common-cyclical features for estimates and forecasts based on vector autoregressive models. First, we show that the best empirical model developed without common cycle restrictions need not nest the best model developed with those restrictions. This is due to possible differences in the lag-lengths chosen by model selection criteria for the two alternative models. Second, we show that the costs of ignoring common cyclical features in vector autoregressive modelling can be high, both in terms of forecast accuracy and efficient estimation of variance decomposition coefficients. Third, we find that the Hannan-Quinn criterion performs best among model selection criteria in simultaneously selecting the lag-length and rank of vector autoregressions.
Resumo:
Despite the belief, supported byrecentapplied research, thataggregate datadisplay short-run comovement, there has been little discussion about the econometric consequences ofthese data features. W e use exhaustive M onte-Carlo simulations toinvestigate theimportance ofrestrictions implied by common-cyclicalfeatures for estimates and forecasts based on vectorautoregressive and errorcorrection models. First, weshowthatthebest empiricalmodeldevelopedwithoutcommoncycles restrictions neednotnestthebest modeldevelopedwiththoserestrictions, duetothe use ofinformation criteria forchoosingthe lagorderofthe twoalternative models. Second, weshowthatthecosts ofignoringcommon-cyclicalfeatures inV A R analysis may be high in terms offorecastingaccuracy and eciency ofestimates ofvariance decomposition coecients. A lthough these costs are more pronounced when the lag orderofV A R modelsareknown, theyarealsonon-trivialwhenitis selectedusingthe conventionaltoolsavailabletoappliedresearchers. T hird, wendthatifthedatahave common-cyclicalfeatures andtheresearcherwants touseaninformationcriterium to selectthelaglength, theH annan-Q uinn criterium is themostappropriate, sincethe A kaike and theSchwarz criteriahave atendency toover- and under-predictthe lag lengthrespectivelyinoursimulations.
Resumo:
Neste trabalho investigamos as propriedades em pequena amostra e a robustez das estimativas dos parmetros de modelos DSGE. Tomamos o modelo de Smets and Wouters (2007) como base e avaliamos a performance de dois procedimentos de estimao: Mtodo dos Momentos Simulados (MMS) e Mxima Verossimilhana (MV). Examinamos a distribuio emprica das estimativas dos parmetros e sua implicao para as anlises de impulso-resposta e decomposio de varincia nos casos de especificao correta e m especificao. Nossos resultados apontam para um desempenho ruim de MMS e alguns padres de vis nas anlises de impulso-resposta e decomposio de varincia com estimativas de MV nos casos de m especificao considerados.
Resumo:
A situao do saneamento no Brasil alarmante. Os servios de gua e esgotamento sanitrio so prestados adequadamente somente para 59,4% e 39,7%, respectivamente, da populao brasileira. Para mudar este quadro, estima-se que sejam necessrios R$ 304 bilhes em investimentos. Parte desse volume ter que vir da iniciativa privada e a estruturao de parcerias pblico privadas uma das formas de atingir este objetivo. Nestes projetos comum o setor pblico oferecer garantias ao parceiro privado para assegurar a viabilidade do empreendimento. O presente trabalho apresenta um modelo para valorao destas garantias, utilizando como estudos de caso as PPP de esgoto da regio metropolitana de Recife e do Municpio de Goiana. O resultado obtido mostrou a importncia desta valorao, uma vez que dependendo do nvel de garantia oferecida o valor presente dos desembolsos previstos para o setor pblico variou de zero a at R$ 204 milhes.
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
Resumo:
Nesta dissertao realizou-se um experimento de Monte Carlo para re- velar algumas caractersticas das distribuies em amostras finitas dos estimadores Backfitting (B) e de Integrao Marginal(MI) para uma regresso aditiva bivariada. Est-se particularmente interessado em fornecer alguma evidncia de como os diferentes mtodos de seleo da janela hn, tais co- mo os mtodos plug-in, impactam as propriedades em pequenas amostras dos estimadores. Est-se interessado, tambm, em fornecer evidncia do comportamento de diferentes estimadores de hn relativamente a seqncia tima de hn que minimiza uma funo perda escolhida. O impacto de ignorar a dependncia entre os regressores na estimao da janela tam- bm investigado. Esta uma prtica comum e deve ter impacto sobre o desempenho dos estimadores. Alm disso, no h nenhuma rotina atual- mente disponvel nos pacotes estatsticos/economtricos para a estimao de regresses aditivas via os mtodos de Backfitting e Integrao Marginal. um dos objetivos a criao de rotinas em Gauss para a implementao prtica destes estimadores. Por fim, diferentemente do que ocorre atual- mente, quando a utilizao dos estimadores-B e MI feita de maneira completamente ad-hoc, h o objetivo de fornecer a usurios informao que permita uma escolha mais objetiva de qual estimador usar quando se est trabalhando com uma amostra finita.
Resumo:
This Thesis is the result of my Master Degree studies at the Graduate School of Economics, Getlio Vargas Foundation, from January 2004 to August 2006. am indebted to my Thesis Advisor, Professor Luiz Renato Lima, who introduced me to the Econometrics' world. In this Thesis, we study time-varying quantile process and we develop two applications, which are presented here as Part and Part II. Each of these parts was transformed in paper. Both papers were submitted. Part shows that asymmetric persistence induces ARCH effects, but the LMARCH test has power against it. On the other hand, the test for asymmetric dynamics proposed by Koenker and Xiao (2004) has correct size under the presence of ARCH errors. These results suggest that the LM-ARCH and the Koenker-Xiao tests may be used in applied research as complementary tools. In the Part II, we compare four different Value-at-Risk (VaR) methodologies through Monte Cario experiments. Our results indicate that the method based on quantile regression with ARCH effect dominates other methods that require distributional assumption. In particular, we show that the non-robust method ologies have higher probability to predict VaRs with too many violations. We illustrate our findings with an empirical exercise in which we estimate VaR for returns of So Paulo stock exchange index, IBOVESPA, during periods of market turmoil. Our results indicate that the robust method based on quantile regression presents the least number of violations.
Resumo:
This paper proposes unit tests based on partially adaptive estimation. The proposed tests provide an intermediate class of inference procedures that are more efficient than the traditional OLS-based methods and simpler than unit root tests based on fully adptive estimation using nonparametric methods. The limiting distribution of the proposed test is a combination of standard normal and the traditional Dickey-Fuller (DF) distribution, including the traditional ADF test as a special case when using Gaussian density. Taking into a account the well documented characteristic of heavy-tail behavior in economic and financial data, we consider unit root tests coupled with a class of partially adaptive M-estimators based on the student-t distributions, wich includes te normal distribution as a limiting case. Monte Carlo Experiments indicate that, in the presence of heavy tail distributions or innovations that are contaminated by outliers, the proposed test is more powerful than the traditional ADF test. We apply the proposed test to several macroeconomic time series that have heavy-tailed distributions. The unit root hypothesis is rejected in U.S. real GNP, supporting the literature of transitory shocks in output. However, evidence against unit roots is not found in real exchange rate and nominal interest rate even haevy-tail is taken into a account.
Resumo:
In this paper, we compare four different Value-at-Risk (V aR) methodologies through Monte Carlo experiments. Our results indicate that the method based on quantile regression with ARCH effect dominates other methods that require distributional assumption. In particular, we show that the non-robust methodologies have higher probability to predict V aRs with too many violations. We illustrate our findings with an empirical exercise in which we estimate V aR for returns of Sao Paulo stock exchange index, IBOVESPA, during periods of market turmoil. Our results indicate that the robust method based on quantile regression presents the least number of violations.
Resumo:
Os objetivos deste trabalho foram (i) rever mtodos numricos para precificao de derivativos; e (ii) comparar os mtodos assumindo que os preos de mercado refletem queles obtidos pela frmula de Black Scholes para precificao de opes do tipo europia. Aplicamos estes mtodos para precificar opes de compra da aes Telebrs. Os critrios de acurcia e de custo computacional foram utilizados para comparar os seguintes modelos binomial, Monte Carlo, e diferenas finitas. Os resultados indicam que o modelo binomial possui boa acurcia e custo baixo, seguido pelo Monte Carlo e diferenas finitas. Entretanto, o mtodo Monte Carlo poderia ser usado quando o derivativo depende de mais de dois ativos-objetos. recomendvel usar o mtodo de diferenas finitas quando se obtm uma equao diferencial parcial cuja soluo o valor do derivativo.
Resumo:
Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).