3 resultados para Modeling approach
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Market risk exposure plays a key role for nancial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incurwhen the price of the portfolio's assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of nancial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estimation. The approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling, which employs memberships and typicalities to update clusters and creates new clusters based on a statistical control distance-based criteria. ePFM also uses an utility measure to evaluate the quality of the current cluster structure. Computational experiments consider data of the main global equity market indexes of United States, London, Germany, Spain and Brazil from January 2000 to December 2012 for VaR estimation using ePFM, traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory and state of the art evolving approaches. The results show that ePFM is a potential candidate for VaR modeling, with better performance than alternative approaches.
Resumo:
Este artigo estuda a previsão da estrutura a termo da taxa de juros brasileira utilizando de fatores comuns extraídos de uma vasta base de séries macroeconômicas. Os períodos para estimação e previsão compreendem o intervalo de Janeiro de 2000 a Maio de 2012. Foram empregas 171 séries mensais para a construção da base. Primeiramente foi implementado o modelo proposto por Moench (2008), no qual a dinâmica da taxa de juros de curto prazo é modelada através de um FAVAR e a estrutura a termo é derivada utilizando-se de restrições implicadas por não arbitragem. A escolha pela adoção deste modelo se deve aos resultados obtidos no estudo original, nos quais tal modelagem apresentou melhor desempenho preditivo para horizontes intermediários e longos quando comparado com benchmarks usuais. Contudo, tais resultados também apresentaram uma deterioração progressiva à medida que as maturidades aumentam, evidenciando uma possível inadequação do modelo para as partes intermediária e longa da curva. A implementação deste modelo para a estrutura a termo brasileira levou a resultados muito similares ao do estudo original. Visando contornar a deterioração mencionada, foi proposta uma modelagem alternativa na qual a dinâmica de cada taxa é modelada conjuntamente com os fatores macroeconômicos, eliminando-se as restrições implicadas por não arbitragem. Tal modelagem proporcionou resultados de previsão amplamente superiores e através dela foi possível confirmar a inadequação descrita. Por fim, também foi realizada a inserção dos fatores macro na dinâmica dos fatores beta do modelo de Diebold e Li (2006), levando a um grande ganho de capacidade preditiva, principalmente para horizontes maiores de previsão.
Resumo:
This work proposes a method to examine variations in the cointegration relation between preferred and common stocks in the Brazilian stock market via Markovian regime switches. It aims on contributing for future works in "pairs trading" and, more specifically, to price discovery, given that, conditional on the state, the system is assumed stationary. This implies there exists a (conditional) moving average representation from which measures of "information share" (IS) could be extracted. For identification purposes, the Markov error correction model is estimated within a Bayesian MCMC framework. Inference and capability of detecting regime changes are shown using a Montecarlo experiment. I also highlight the necessity of modeling financial effects of high frequency data for reliable inference.