1 resultado para Mandibular Advancement Device® (MAD-ITO)
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- JISC Information Environment Repository (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (9)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (170)
- CentAUR: Central Archive University of Reading - UK (23)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (116)
- Cochin University of Science & Technology (CUSAT), India (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (2)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (14)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (7)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (68)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (131)
- Queensland University of Technology - ePrints Archive (100)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (120)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (3)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (9)
- University of Southampton, United Kingdom (1)
Resumo:
In this paper we analyze the optimality of allowing firms to observe signals of workers’ characteristics in an optimal taxation framework. We show that it is always optimal to prohibit signals that disclose information about differences in the intrinsic productivities of workers like mandatory health exams and IQ tests, for example. On the other hand, it is never optimal to forbid signals that reveal information about the comparative advantages of workers like their specialization and profession. When signals are mixed (they disclose both types of information), there is a trade-off between efficiency and equity. It is optimal to prohibit signals with sufficiently low comparative advantage content.