3 resultados para Linear matrix inequalities (LMI) techniques

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature has emphasized that absorptive capacity (AC) leads to performance, but in projects its influences still unclear. Additionally, the project success is not well understood by the literature, and AC can be an important mechanism to explain it. Therefore, the purpose of this study is to investigate the effect of absorptive capacity on project performance in the construction industry of São Paulo State. We study this influence through potential and realized absorptive capacity proposed by Zahra and George (2002). For achieving this goal, we use a combination of qualitative and quantitative research. The qualitative research is based on 15 interviews with project managers in different sectors to understand the main constructs and support the next quantitative phase. The content analysis was the technique used to analyze those interviews. In quantitative phase through a survey questionnaire, we collected 157 responses in the construction sector with project managers. The confirmatory factor analysis and hierarchical linear regression were the techniques used to assess the data. Our findings suggest that the realized absorptive capacity has a positive influence on performance, but potential absorptive capacity and the interactions effect have no influence on performance. Moreover, the planning and monitoring have a positive impact on budget and schedule, and customer satisfaction while risk coping capacity has a positive impact on business success. In academics terms, this research enables a better understanding of the importance of absorptive capacity in the construction industry and it confirms that knowledge application in processes and routines enhances performance. For management, the absorptive capacity enables the improvements of internal capabilities reflected in the increased project management efficiency. Indeed, when a company manages project practices efficiently it enhances business and project performance; however, it needs initially to improve its internal abilities to enrich processes and routines through relevant knowledge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estado e sociedade brasileiros conviveram em descompasso, nos anos 80. A conseqüência imediata desse fenômeno foi o atendimento insuficiente de necessidades básicas da sociedade, nesse período, com aumento da entropia em vários subsistemas sociais brasileiros, dentre os quais o subsistema de saúde. Nesta tese, trabalhando com dados econômicos, sociais e de saúde, e construindo algumas variáveis-indicadores, confrontou-se, naquele período, necessidades da sociedade com ações do Estado, na área da saúde. Utilizando técnicas estatísticas - análise gráfica, associação estatística dos indicadores selecionados (matriz de correlação de PEARSON), análise em componentes principais, análise de agrupamento e análise de regressão linear múltipla com variáveis logaritímizadas - foi possível visualizar causas e conseqüências dessa alta entropia, caracterizada por desperdício de recursos e várias situações propensas à geração de crises nas organizações, setores e instituições do subsistema de saúde brasileiro. Propõe-se um método de alocação de recursos federais, objetivando minimizar desigualdades entre as Unidades da Federação, a partir de seus desempenhos na área de saúde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heteroskedasticity-consistent covariance matrix estimator proposed by White (1980), also known as HC0, is commonly used in practical applications and is implemented into a number of statistical software. Cribari–Neto, Ferrari & Cordeiro (2000) have developed a bias-adjustment scheme that delivers bias-corrected White estimators. There are several variants of the original White estimator that also commonly used by practitioners. These include the HC1, HC2 and HC3 estimators, which have proven to have superior small-sample behavior relative to White’s estimator. This paper defines a general bias-correction mechamism that can be applied not only to White’s estimator, but to variants of this estimator as well, such as HC1, HC2 and HC3. Numerical evidence on the usefulness of the proposed corrections is also presented. Overall, the results favor the sequence of improved HC2 estimators.