1 resultado para LOAD INDENTS
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- Aberdeen University (6)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (6)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (4)
- Aston University Research Archive (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (68)
- Boston University Digital Common (8)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (33)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (3)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Greenwich Academic Literature Archive - UK (10)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (82)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (18)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (68)
- Queensland University of Technology - ePrints Archive (191)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (87)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- School of Medicine, Washington University, United States (1)
- Universidad Politécnica de Madrid (21)
- Universidade Federal do Pará (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (2)
- Université de Montréal, Canada (3)
- University of Michigan (53)
- University of Queensland eSpace - Australia (37)
- University of Washington (2)
- WestminsterResearch - UK (3)
Resumo:
This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.