2 resultados para Identification problem

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O problema da identificação de equações de oferta e demanda de crédito para verificação da existência do canal de crédito tem sido sendo bastante discutido nas últimas décadas. Este trabalho avalia a estratégia de identificação via estimação de um modelo de um Modelo Vetorial de Correção de Erros para determinar a relevância do canal de crédito no Brasil. Foram utilizados dados agregados mensais compreendendo o período de 2001 até 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.