3 resultados para Generalized Driven Nonlinear Threshold Model

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper analyzes a two period general equilibrium model with individual risk and moral hazard. Each household faces two individual states of nature in the second period. These states solely differ in the household's vector of initial endowments, which is strictly larger in the first state (good state) than in the second state (bad state). In the first period households choose a non-observable action. Higher leveis of action give higher probability of the good state of nature to occur, but lower leveIs of utility. Households have access to an insurance market that allows transfer of income across states of oature. I consider two models of financiaI markets, the price-taking behavior model and the nonlínear pricing modelo In the price-taking behavior model suppliers of insurance have a belief about each household's actíon and take asset prices as given. A variation of standard arguments shows the existence of a rational expectations equilibrium. For a generic set of economies every equilibrium is constraíned sub-optímal: there are commodity prices and a reallocation of financiaI assets satisfying the first period budget constraint such that, at each household's optimal choice given those prices and asset reallocation, markets clear and every household's welfare improves. In the nonlinear pricing model suppliers of insurance behave strategically offering nonlinear pricing contracts to the households. I provide sufficient conditions for the existence of equilibrium and investigate the optimality properties of the modeI. If there is a single commodity then every equilibrium is constrained optimaI. Ir there is more than one commodity, then for a generic set of economies every equilibrium is constrained sub-optimaI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.