3 resultados para Fuzzy Logics

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propõe-se com a presente dissertação conduzir estudo exploratório sobre a razoabilidade de um método de apoio à tomada de decisão para ordenar os controles internos contábeis, utilizando critérios estabelecidos pelo regulador do mercado de capitais dos Estados Unidos, quantificados por meio de uma escala baseada em operadores da lógica fuzzy. O método foi elaborado com base em pesquisa bibliográfica sobre o controle interno contábil e sua relação com os controles internos em geral; a exigência de constituição, avaliação e divulgação da avaliação dos controles internos contábeis pela legislação do mercado de capitais americano ao longo das últimas três décadas; o conceito de matriz de risco; os métodos de apoio à decisão; e os fundamentos da lógica fuzzy. A metodologia proposta foi adaptada à realidade da entidade objeto do estudo de caso e aplicada sobre 2,4 mil controles. Uma amostra de aproximadamente 14% desse universo foi analisada e permitiu concluir pela razoabilidade do método proposto, que será utilizado pela entidade estudada como parte de seu processo de avaliação dos controles internos contábeis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem por objetivo propor uma carteira composta por posições compradas e vendidas de ações que supere os principais Índices de mercado. O resultado é obtido através de um modelo de Lógica Fuzzy, que é um modelo de inteligência artificial que trata os dados de maneira lógica, ou seja, sem relacionar as variáveis através de modelos matemáticos convencionais. Para esse estudo utilizamos como variáveis de entrada os múltiplos Preço/Lucro Esperado e Preço/Valor Patrimonial da Empresa de cada ação considerada. Foram estudadas as ações do mercado americano pertencentes ao índice S&P 500, do ano de 2000 até 2007. Com o intuito de comparar a eficiência do Modelo de Lógica Fuzzy, utilizamos o modelo de Regressão Linear Multivariada e os índices de mercado S&P 500 e o S&P 500 com uma modificação para se adequar aos dados escolhidos para o estudo. O modelo proposto produziu resultados satisfatórios. Para quase todos os anos estudados o retorno da carteira obtida foi muito superior ao dos Índices de mercado e do modelo linear convencional. Através de testes adequados comprovamos estatisticamente a eficiência do modelo em comparação aos Índices de mercado e ao modelo linear convencional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Market risk exposure plays a key role for nancial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incurwhen the price of the portfolio's assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of nancial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estimation. The approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling, which employs memberships and typicalities to update clusters and creates new clusters based on a statistical control distance-based criteria. ePFM also uses an utility measure to evaluate the quality of the current cluster structure. Computational experiments consider data of the main global equity market indexes of United States, London, Germany, Spain and Brazil from January 2000 to December 2012 for VaR estimation using ePFM, traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory and state of the art evolving approaches. The results show that ePFM is a potential candidate for VaR modeling, with better performance than alternative approaches.