2 resultados para Frequency dependence parameters

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta dissertação concentra-se nos processos estocásticos espaciais definidos em um reticulado, os chamados modelos do tipo Cliff & Ord. Minha contribuição nesta tese consiste em utilizar aproximações de Edgeworth e saddlepoint para investigar as propriedades em amostras finitas do teste para detectar a presença de dependência espacial em modelos SAR (autoregressivo espacial), e propor uma nova classe de modelos econométricos espaciais na qual os parâmetros que afetam a estrutura da média são distintos dos parâmetros presentes na estrutura da variância do processo. Isto permite uma interpretação mais clara dos parâmetros do modelo, além de generalizar uma proposta de taxonomia feita por Anselin (2003). Eu proponho um estimador para os parâmetros do modelo e derivo a distribuição assintótica do estimador. O modelo sugerido na dissertação fornece uma interpretação interessante ao modelo SARAR, bastante comum na literatura. A investigação das propriedades em amostras finitas dos testes expande com relação a literatura permitindo que a matriz de vizinhança do processo espacial seja uma função não-linear do parâmetro de dependência espacial. A utilização de aproximações ao invés de simulações (mais comum na literatura), permite uma maneira fácil de comparar as propriedades dos testes com diferentes matrizes de vizinhança e corrigir o tamanho ao comparar a potência dos testes. Eu obtenho teste invariante ótimo que é também localmente uniformemente mais potente (LUMPI). Construo o envelope de potência para o teste LUMPI e mostro que ele é virtualmente UMP, pois a potência do teste está muito próxima ao envelope (considerando as estruturas espaciais definidas na dissertação). Eu sugiro um procedimento prático para construir um teste que tem boa potência em uma gama de situações onde talvez o teste LUMPI não tenha boas propriedades. Eu concluo que a potência do teste aumenta com o tamanho da amostra e com o parâmetro de dependência espacial (o que está de acordo com a literatura). Entretanto, disputo a visão consensual que a potência do teste diminui a medida que a matriz de vizinhança fica mais densa. Isto reflete um erro de medida comum na literatura, pois a distância estatística entre a hipótese nula e a alternativa varia muito com a estrutura da matriz. Fazendo a correção, concluo que a potência do teste aumenta com a distância da alternativa à nula, como esperado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Regular vine copulas are multivariate dependence models constructed from pair-copulas (bivariate copulas). In this paper, we allow the dependence parameters of the pair-copulas in a D-vine decomposition to be potentially time-varying, following a nonlinear restricted ARMA(1,m) process, in order to obtain a very flexible dependence model for applications to multivariate financial return data. We investigate the dependence among the broad stock market indexes from Germany (DAX), France (CAC 40), Britain (FTSE 100), the United States (S&P 500) and Brazil (IBOVESPA) both in a crisis and in a non-crisis period. We find evidence of stronger dependence among the indexes in bear markets. Surprisingly, though, the dynamic D-vine copula indicates the occurrence of a sharp decrease in dependence between the indexes FTSE and CAC in the beginning of 2011, and also between CAC and DAX during mid-2011 and in the beginning of 2008, suggesting the absence of contagion in these cases. We also evaluate the dynamic D-vine copula with respect to Value-at-Risk (VaR) forecasting accuracy in crisis periods. The dynamic D-vine outperforms the static D-vine in terms of predictive accuracy for our real data sets.