5 resultados para Free Boundary Value Problem
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
As in the standard land assembly problem, a developer wants to buy two adjacent blocks of land belonging to two di¤erent owners. The value of the two blocks of land to the developer is greater than the sum of the individual values of the blocks for each owner. Unlike the land assembly literature, however, our focus is on the incentive that each lot owner has to delay the start of negotiations, rather than on the public goods nature of the problem. An incentive for delay exists, for example, when owners perceive that being last to sell will allow them to capture a larger share of the joint surplus from the development. We show that competition at point of sale can cause equilibrium delay, and that cooperation at point of sale will eliminate delay.
Resumo:
Economists have argued that regulation is the appropriate approach to maintain output in its economically efficient level in a natural monopoly, and that can be achieved by submitting these companies to regulatory agencies’ decisions. The autonomous agencies are, however, not free in an absolute sense, and it is important to ask what the priorities of the new administration are. One answer is that it is designed to give leeway and powers of discretion to unbiased professionals with expertise in their field. In practice, however, professional experts might often be politically motivated. The objective of this study is to investigate whether political nominations to the presidency of regulatory agencies, rather than technical appointments, affect the level of regulatory risk. In order to achieve this purpose, an event study was performed, where the regulatory risk in a political nomination will be compared to a technical nomination, in terms of abnormal return.
Resumo:
Multivariate Affine term structure models have been increasingly used for pricing derivatives in fixed income markets. In these models, uncertainty of the term structure is driven by a state vector, while the short rate is an affine function of this vector. The model is characterized by a specific form for the stochastic differential equation (SDE) for the evolution of the state vector. This SDE presents restrictions on its drift term which rule out arbitrages in the market. In this paper we solve the following inverse problem: Suppose the term structure of interest rates is modeled by a linear combination of Legendre polynomials with random coefficients. Is there any SDE for these coefficients which rules out arbitrages? This problem is of particular empirical interest because the Legendre model is an example of factor model with clear interpretation for each factor, in which regards movements of the term structure. Moreover, the Affine structure of the Legendre model implies knowledge of its conditional characteristic function. From the econometric perspective, we propose arbitrage-free Legendre models to describe the evolution of the term structure. From the pricing perspective, we follow Duffie et al. (2000) in exploring Legendre conditional characteristic functions to obtain a computational tractable method to price fixed income derivatives. Closing the article, the empirical section presents precise evidence on the reward of implementing arbitrage-free parametric term structure models: The ability of obtaining a good approximation for the state vector by simply using cross sectional data.
Resumo:
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.
Resumo:
We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.