2 resultados para Fractal
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
As variáveis econômicas são frequentemente governadas por processos dinâmicos e não-lineares que podem gerar relações de dependência de longo prazo e padrões cíclicos não-periódicos com mudanças abruptas de tendências. Para o caso dos preços agrícolas este comportamento não é diferente e as peculiaridades destes mercados podem gerar séries temporais fracionalmente integradas, cujas singularidades não seriam adequadamente capturadas pelos tradicionais modelos analíticos fundamentados na hipótese dos mercados eficientes e de passeio aleatório. Sendo assim, o presente estudo buscou investigar a presença de estruturas fractais no mercado à vista de algumas das principais commodities agrícolas brasileiras: café, boi gordo, açúcar, milho, soja e bezerro. Foram empregadas técnicas tradicionais e específicas para a análise de séries temporais fractais como a análise de R/S e a aplicação de modelos das famílias ARFIMA e FIGARCH. Os resultados indicaram que, com exceção do bezerro, o componente de drift destas séries não apresentou comportamento fractal, ao contrário do observado para o componente da volatilidade, que apresentou aspecto de estrutura fractal para todas as commodities analisadas.
Resumo:
Um dos principais fatores de estudo do mercado de capitais é a discussão a respeito da teoria de eficiência de mercado, que no caso diverge em relação ao comportamento do preço da maioria dos ativos. Este trabalho tem o intuito de analisar o comportamento do principal índice de preços do mercado de bitcoins (BPI) durante o período de julho de 2010 a setembro de 2014. Inicialmente será testada a hipótese do passeio aleatório para o BPI. Em seguida serão verificadas as correlações de longa data nas séries financeiras temporais utilizando como instrumento de análise o expoente de Hurst (H), que inicialmente foi usado para calcular correlações em fenômenos naturais e posteriormente sua abrangência alcançou a área financeira. O estudo avalia o expoente H através de métodos distintos destacando-se a análise R/S e a DFA. Para o cálculo do expoente ao longo do tempo, utiliza-se uma janela móvel de 90 dias deslocando-se de 10 em 10 dias. Já para o cálculo em diferentes escalas verifica-se, para cada dia, o valor do expoente H nos últimos 360, 180 e 90 dias respectivamente. Os resultados evidenciaram que o índice BPI apresenta memória longa persistente em praticamente todo o período analisado. Além disso, a análise em diferentes escalas indica a possibilidade de previsão de eventos turbulentos no índice neste mesmo período. Finalmente foi possível comprovar a hipótese de mercados fractais para a série histórica de retornos do BPI.