35 resultados para Filtro de Kalman-Bucy
em Repositório digital da Fundação Getúlio Vargas - FGV
Estimativa de provisões de IBNR utilizando espaço de estados e filtro de Kalman : um caso brasileiro
Resumo:
Esta dissertação pretende discutir a provisão de sinistros do tipo IBNR, bem como qual a melhor forma de estimar estas provisões. Para tanto, serão utilizados dados reais de uma grande seguradora Brasileira para um produto de seguro de um ramo Não Vida. Serão utilizados no cálculo o clássico método Chain Ladder e em contrapartida um modelo de Espaço de Estados e Filtro de Kalman, discutindo as flexibilidades, vantagens e desvantagens de se utilizar tal metodologia.
Resumo:
Este trabalho tem o objetivo de testar a qualidade preditiva do Modelo Vasicek de dois fatores acoplado ao Filtro de Kalman. Aplicado a uma estratégia de investimento, incluímos um critério de Stop Loss nos períodos que o modelo não responde de forma satisfatória ao movimento das taxas de juros. Utilizando contratos futuros de DI disponíveis na BMFBovespa entre 01 de março de 2007 a 30 de maio de 2014, as simulações foram realizadas em diferentes momentos de mercado, verificando qual a melhor janela para obtenção dos parâmetros dos modelos, e por quanto tempo esses parâmetros estimam de maneira ótima o comportamento das taxas de juros. Os resultados foram comparados com os obtidos pelo Modelo Vetor-auto regressivo de ordem 1, e constatou-se que o Filtro de Kalman aplicado ao Modelo Vasicek de dois fatores não é o mais indicado para estudos relacionados a previsão das taxas de juros. As limitações desse modelo o restringe em conseguir estimar toda a curva de juros de uma só vez denegrindo seus resultados.
Resumo:
O presente trabalho estima por máxima verossimilhança um modelo de ciclos reais para as economias brasileira americana. Os parâmetros são estimados partir de um VAR na forma estrutural obtido de um modelo macroeconômico de horizonte infinito com agente representativo choque tecnológico. Como algumas variáveis necessárias para estimação do modelo não são observadas emprega-se, na rotina computacional escrita em Matlab, método de Filtro de Kalman. Desta forma, enfoque adotado apresenta-se como opção metodologia de calibração, bem como metodologia de modelos VAR com imputação ad hoc de condições de identificação. Para estimação do modelo construiu-se uma base de dados de tributação para o Brasil, desagregando em impostos sobre absorção, sobre rendimento do fator capital sobre fator trabalho para período 1949-1995. Também empreende-se ao longo da dissertação, um detalhamento minucioso da técnica econométrica empregada dos procedimentos computacionais adotados.
Resumo:
O objetivo deste trabalho é caracterizar a Curva de Juros Mensal para o Brasil através de três fatores, comparando dois tipos de métodos de estimação: Através da Representação em Espaço de Estado é possível estimá-lo por dois Métodos: Filtro de Kalman e Mínimos Quadrados em Dois Passos. Os fatores têm sua dinâmica representada por um Modelo Autorregressivo Vetorial, VAR(1), e para o segundo método de estimação, atribui-se uma estrutura para a Variância Condicional. Para a comparação dos métodos empregados, propõe-se uma forma alternativa de compará-los: através de Processos de Markov que possam modelar conjuntamente o Fator de Inclinação da Curva de Juros, obtido pelos métodos empregados neste trabalho, e uma váriavel proxy para Desempenho Econômico, fornecendo alguma medida de previsão para os Ciclos Econômicos.
Resumo:
Neste artigo, foi estimada a taxa natural de juros para a economia brasileira entre o final de 2001 e segundo trimestre de 2010 com base em dois modelos, sendo o primeiro deles o proposto por Laubach e Williams e o segundo proposto por Mesónnier e Renne, que trata de uma versão alterada do primeiro, que segundo os autores perimite uma estimação mais transparente e robusta. Em ambos os modelos, a taxa natural de juros é estimada em conjunto com o produto potencial, através de filtro de Kalman, no formato de um modelo Espaço de Estado. As estimativas provenientes dos dois modelos não apresentam diferenças relevantes, o que gera maior confiabilidade nos resultados obtidos. Para o período de maior interesse deste estudo (pós-2005), dada a existência de outras análises para período anterior, as estimativas mostram que a taxa natural de juros está em queda na economia brasileira desde 2006. A mensuração da taxa natural de juros, adicionalmente, possibilitou que fosse feita uma avaliação sobre a condução da política monetária implementada pelo Banco Central brasileiro nos últimos anos através do conceito de hiato de juros. Em linhas gerais, a análise mostrou um Banco Central mais conservador entre o final de 2001 e 2005, e mais próximo da neutralidade desde então. Esta conclusão difere da apontada por outros estudos, especialmente para o primeiro período.
Resumo:
Este trabalho se propõe a testar a validade da hipótese da paridade câmbio-juro para o caso brasileiro e, posteriormente, a investigar a principal explicação apontada pela literatura para a falência da UIP, qual seja: a existência de um prêmio de risco cambial variante ao longo do tempo. A clássica abordagem das regressões de Fama, aplicadas para o período de livre flutuação cambial, sugere falência da hipótese em questão quando considerados contratos de NDF de doze meses sobre o real, identificando viés nos contratos futuros como estimadores da taxa de câmbio – não foi possível obter a mesma conclusão ao se trabalhar com contratos futuros de dólar de um mês negociados na BM&F. Feitas as regressões de Fama, replica-se ao caso brasileiro metodologia implementada por Clarida et. al. (2009) para os países desenvolvidos, na tentativa de capturar eventual relação entre a volatilidade e o excesso de retorno de uma estratégia de carry trade com o real. Em linha com os resultados obtidos pela experiência internacional, detecta-se correlação negativa entre a volatilidade e o excesso de retorno de tal estratégia. A partir de tal conclusão, revisitam-se as regressões de Fama para subperíodos, conforme a volatilidade. Períodos de maior volatilidade foram caracterizados por um incremento do coeficiente da regressão de Fama, novamente em um resultado alinhado àquele obtido por Clarida et. al. (2009). Esgotado o assunto circunscrito às regressões de Fama, passa-se à estimativa da série de prêmio de risco cambial propriamente dita, por meio da metodologia de Filtro de Kalman imposta à série de NDF de doze meses, a qual detectou um prêmio de risco cambial com média positiva na amostra considerada – em linha com a intuição -, mas com medidas de dispersão bastante elevadas. O estudo segue numa tentativa de modelar o prêmio de risco cambial através de um instrumental da família GARCH-M, sendo, entretanto, incapaz de prover boas estimativas para o comportamento da variável sob interesse. Inicia-se um novo capítulo com o intuito de introduzir microfundamentação ao prêmio de risco cambial, trazendo ao caso brasileiro método desenvolvido por Frankel (1982). A aderência da modelagem também foi baixa. Para terminar, apresenta-se investigação preliminar sobre a relação entre o prêmio de risco cambial e a presença de eventos considerados raros na série de PTAX, seguindo intuição levantada por Rietz (1988) e expandida por Barro (2005). A moeda brasileira carrega caráter leptocúrtico superior às demais componentes da amostra, indicando que, de fato, o prêmio de risco cambial exigido para se estar na moeda doméstica pode estar relacionado à recorrência de eventos supostamente raros.
Resumo:
Neste artigo, foi estimada a taxa natural de juros para a economia brasileira entre o final de 2001 e segundo trimestre de 2010 com base em dois modelos, sendo o primeiro deles o proposto por Laubach e Williams e o segundo proposto por Mesónnier e Renne, que trata de uma versão alterada do primeiro, que segundo os autores perimite uma estimação mais transparente e robusta. Em ambos os modelos, a taxa natural de juros é estimada em conjunto com o produto potencial, através de filtro de Kalman, no formato de um modelo Espaço de Estado. As estimativas provenientes dos dois modelos não apresentam diferenças relevantes, o que gera maior confiabilidade nos resultados obtidos. Para o período de maior interesse deste estudo (pós-2005), dada a existência de outras análises para período anterior, as estimativas mostram que a taxa natural de juros está em queda na economia brasileira desde 2006. A mensuração da taxa natural de juros, adicionalmente, possibilitou que fosse feita uma avaliação sobre a condução da política monetária implementada pelo Banco Central brasileiro nos últimos anos através do conceito de hiato de juros. Em linhas gerais, a análise mostrou um Banco Central mais conservador entre o final de 2001 e 2005, e mais próximo da neutralidade desde então. Esta conclusão difere da apontada por outros estudos, especialmente para o primeiro período.
Resumo:
O objetivo desse trabalho é obter um conjunto de evidências empíricas a respeito da dinâmica econômica de curto-prazo das regiões brasileiras para avaliar se as diferenças regionais resultam em ausência de sincronia econômica. Foi construida uma séries de evidências acerca do comportamento cíclico das regiões brasileiras, sendo uma parte delas por datação via o algoritmo de Bry Boschan e outra parte por meio da construção de um indicador do nível de atividade, pela metodologia de Stock e Watson de fatores dinâmicos. Em decorrência à dificuldade de disponibilidade de dados, só foi possível analisar dez estados brasileiros. Apesar das evidências geradas pelo algoritmo de Bry Boschan terem diferenças em relação as evidências geradas pelo modelo de Stock Watson, foi possível constatar que os ciclos regionais são bastante diferentes se comparados com os ciclos nacionais, sendo São Paulo o Estado que possui a maior sincronia e os Estados de Pernambuco e Rio Grande do Sul as menores. No entanto, duas recessões foram captadas na maioria dos estados, a de 2002 e a de 2008, sugerindo o quanto esses períodos foram abrangentes sendo que boa parte dos estados foi afetada.
Resumo:
O trabalho tem como objetivo comparar a eficácia das diferentes metodologias de projeção de inflação aplicadas ao Brasil. Serão comparados modelos de projeção que utilizam os dados agregados e desagregados do IPCA em um horizonte de até doze meses à frente. Foi utilizado o IPCA na base mensal, com início em janeiro de 1996 e fim em março de 2012. A análise fora da amostra foi feita para o período entre janeiro de 2008 e março de 2012. Os modelos desagregados serão estimados por SARIMA, pelo software X-12 ARIMA disponibilizado pelo US Census Bureau, e terão as aberturas do IPCA de grupos (9) e itens (52), assim como aberturas com sentido mais econômico utilizadas pelo Banco Central do Brasil como: serviços, administrados, alimentos e industrializados; duráveis, não duráveis, semiduráveis, serviços e administrados. Os modelos agregados serão estimados por técnicas como SARIMA, modelos estruturais em espaço-estado (Filtro de Kalman) e Markov-switching. Os modelos serão comparados pela técnica de seleção de modelo Model Confidence Set, introduzida por Hansen, Lunde e Nason (2010), e Dielbod e Mariano (1995), no qual encontramos evidências de ganhos de desempenho nas projeções dos modelos mais desagregados em relação aos modelos agregados.
Resumo:
Esta pesquisa busca testar a eficácia de uma estratégia de arbitragem de taxas de juros no Brasil baseada na utilização do modelo de Nelson-Siegel dinâmico aplicada à curva de contratos futuros de taxa de juros de 1 dia da BM&FBovespa para o período compreendido entre 02 de janeiro de 2008 e 03 de dezembro de 2012. O trabalho adapta para o mercado brasileiro o modelo original proposto por Nelson e Siegel (1987), e algumas de suas extensões e interpretações, chegando a um dos modelos propostos por Diebold, Rudebusch e Aruoba (2006), no qual estimam os parâmetros do modelo de Nelson-Siegel em uma única etapa, colocando-o em formato de espaço de estados e utilizando o Filtro de Kalman para realizar a previsão dos fatores, assumindo que o comportamento dos mesmos é um VAR de ordem 1. Desta maneira, o modelo possui a vantagem de que todos os parâmetros são estimados simultaneamente, e os autores mostraram que este modelo possui bom poder preditivo. Os resultados da estratégia adotada foram animadores quando considerados para negociação apenas os 7 primeiros vencimentos abertos para negociação na BM&FBovespa, que possuem maturidade máxima próxima a 1 ano.
Resumo:
Este trabalho compara modelos de séries temporais para a projeção de curto prazo da inflação brasileira, medida pelo Índice de Preços ao Consumidor Amplo (IPCA). Foram considerados modelos SARIMA de Box e Jenkins e modelos estruturais em espaço de estados, estimados pelo filtro de Kalman. Para a estimação dos modelos, foi utilizada a série do IPCA na base mensal, de março de 2003 a março de 2012. Os modelos SARIMA foram estimados no EVIEWS e os modelos estruturais no STAMP. Para a validação dos modelos para fora da amostra, foram consideradas as previsões 1 passo à frente para o período de abril de 2012 a março de 2013, tomando como base os principais critérios de avaliação de capacidade preditiva propostos na literatura. A conclusão do trabalho é que, embora o modelo estrutural permita, decompor a série em componentes com interpretação direta e estudá-las separadamente, além de incorporar variáveis explicativas de forma simples, o desempenho do modelo SARIMA para prever a inflação brasileira foi superior, no período e horizonte considerados. Outro importante aspecto positivo é que a implementação de um modelo SARIMA é imediata, e previsões a partir dele são obtidas de forma simples e direta.
Resumo:
Por definição as empresas startups estão expostas a mais riscos e vulnerabilidades que empresas maduras e já estabelecidas no mercado. O objetivo do presente estudo é identificar, aplicar e testar uma possível metodologia para calcular prêmio de risco adicional para startups. Para tanto este trabalho desenvolve um estudo de caso no qual a conhecida metodologia para cálculo de prêmio de risco de tamanho da Morningstar é aplicada a uma startup americana. A aderência da metodologia proposta neste estudo é testada pela metodologia do filtro de Kalman, que calcula o prêmio de risco por tamanho variando ao longo do tempo. Os resultados encontrados são similares em ambas as metodologias. De forma que é possível concluir que a metodologia da Morningstar, quando aplicada para calcular prêmio por tamanho variante ao longo do tempo é robusta.
Resumo:
Este trabalho apresenta uma metodologia para o cálculo do PIB trimestral a preços constantes nos anos anteriores a 1980, quando o IBGE passou a calcular esse indicador para o Brasil, e apresenta os resultados de sua aplicação aos anos de 1947 a 1980. Para a estimação do indicador do PIB trimestral construiu-se primeiramente uma base de dados composta por séries fortemente associadas ao nível de atividade econômica nacional depois de 1980 e que também estivessem disponíveis em frequência mensal ou trimestral no período 1947-80. Em seguida, aplicou-se às séries dessa base de dados o método do filtro de Kalman com a restrição de que a cada ano a taxa de crescimento das médias do PIB trimestral obtido após a estimação seja igual à variação da série anual calculada pelas Contas Nacionais.
Resumo:
Este tese é composta por quatro ensaios sobre aplicações econométricas em tópicos econômicos relevantes. Os estudos versam sobre consumo de bens não-duráveis e preços de imóveis, capital humano e crescimento econômico, demanda residencial de energia elétrica e, por fim, periodicidade de variáveis fiscais de Estados e Municípios brasileiros. No primeiro artigo, "Non-Durable Consumption and Real-Estate Prices in Brazil: Panel-Data Analysis at the State Level", é investigada a relação entre variação do preço de imóveis e variação no consumo de bens não-duráveis. Os dados coletados permitem a formação de um painel com sete estados brasileiros observados entre 2008- 2012. Os resultados são obtidos a partir da estimação de uma forma reduzida obtida em Campbell e Cocco (2007) que aproxima um modelo estrutural. As estimativas para o caso brasileiro são inferiores as de Campbell e Cocco (2007), que, por sua vez, utilizaram microdados britânicos. O segundo artigo, "Uma medida alternativa de capital humano para o estudo empírico do crescimento", propõe uma forma de mensuração do estoque de capital humano que reflita diretamente preços de mercado, através do valor presente do fluxo de renda real futura. Os impactos dessa medida alternativa são avaliados a partir da estimação da função de produção tradicional dos modelos de crescimento neoclássico. Os dados compõem um painel de 25 países observados entre 1970 e 2010. Um exercício de robustez é realizado para avaliar a estabilidade dos coeficientes estimados diante de variações em variáveis exógenas do modelo. Por sua vez, o terceiro artigo "Household Electricity Demand in Brazil: a microdata approach", parte de dados da Pesquisa de Orçamento Familiar (POF) para mensurar a elasticidade preço da demanda residencial brasileira por energia elétrica. O uso de microdados permite adotar abordagens que levem em consideração a seleção amostral. Seu efeito sobre a demanda de eletricidade é relevante, uma vez que esta demanda é derivada da demanda por estoque de bens duráveis. Nesse contexto, a escolha prévia do estoque de bens duráveis (e consequentemente, a escolha pela intensidade de energia desse estoque) condiciona a demanda por eletricidade dos domicílios. Finalmente, o quarto trabalho, "Interpolação de Variáveis Fiscais Brasileiras usando Representação de Espaço de Estados" procurou sanar o problema de baixa periodicidade da divulgação de séries fiscais de Estados e Municípios brasileiros. Através de técnica de interpolação baseada no Filtro de Kalman, as séries mensais não observadas são projetadas a partir de séries bimestrais parcialmente observadas e covariáveis mensais selecionadas.
Resumo:
Este trabalho primeiramente explora fundamentos teóricos básicos para análise e implementação de algoritmos para a modelagem de séries temporais. A finalidade principal da modelagem de séries temporais será a predição para utilizá-la na arbitragem estatística. As séries utilizadas são retiradas de uma base de histórico do mercado de ações brasileiro. Estratégias de arbitragem estatística, mais especificamente pairs trading, utilizam a característica de reversão à média dos modelos para explorar um lucro potencial quando o módulo do spread está estatisticamente muito afastado de sua média. Além disso, os modelos dinâmicos deste trabalho apresentam parâmetros variantes no tempo que aumentam a sua flexibilidade e adaptabilidade em mudanças estruturais do processo. Os pares do algoritmo de pairs trading são escolhidos selecionando ativos de mesma empresa ou índices e ETFs (Exchange Trade Funds). A validação da escolha dos pares é feita utilizando testes de cointegração. As simulações demonstram os resultados dos testes de cointegração, a variação no tempo dos parâmetros do modelo e o resultado de um portfólio fictício.