2 resultados para Feynman-Kac

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apresento aqui uma abordagem que unifica a literatura sobre os vários modelos de apreçamento de derivativos que consiste em obter por argumentos intuitivos de não arbitragem uma Equação Diferencial Parcial(EDP) e através do método de Feynman-Kac uma solução que é representada por uma esperança condicional de um processo markoviano do preço do derivativo descontado pela taxa livre de risco. Por este resultado, temos que a esperança deve ser tomada com relação a processos que crescem à taxa livre de risco e por este motivo dizemos que a esperança é tomada em um mundo neutro ao risco(ou medida neutra ao risco). Apresento ainda como realizar uma mudança de medida pertinente que conecta o mundo real ao mundo neutro ao risco e que o elemento chave para essa mudança de medida é o preço de mercado dos fatores de risco. No caso de mercado completo o preço de mercado do fator de risco é único e no caso de mercados incompletos existe uma variedade de preços aceitáveis para os fatores de risco pelo argumento de não arbitragem. Neste último caso, os preços de mercado são geralmente escolhidos de forma a calibrar o modelo com os dados de mercado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A integração estocástica é a ferramenta básica para o estudo do apreçamento de ativos derivados1 nos modelos de finanças de tempo contínuo. A fórmula de Black e Scholes é o exemplo mais conhecido. Os movimentos de preços de ações, são frequentemente modelados - tanto teóricamente quanto empÍricamente - como seguindo uma equação diferencial estocástica. O livro texto de D. Duflle, "Dynamic asset pricing theory)) 1 usa livremente conceitos como o teorema de Girsanov e a fórmula de Feynrnan-Kac. U fi conhecimento básico da integração estocástica é cada vez mais necessário para quem quer acompanhar a literatura moderna em finanças. Esta introdução à integração estocástica é dirigida para alunos de doutourado e no final de mestrado. Um conhecimento sólid02 de continuidade, limites e facilidade de operar com a notação de conjuntos é fundamental para a compreensão do texto que se segue. Um conhecimento básico de integral de Lebesgue é recomendável. No entanto incluí no texto as definições básicas e os resultados fundamentais da teoria da integral de Lebesgue usados no texto.