2 resultados para Feature analysis

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excessive labor turnover may be considered, to a great extent, an undesirable feature of a given economy. This follows from considerations such as underinvestment in human capital by firms. Understanding the determinants and the evolution of turnover in a particular labor market is therefore of paramount importance, including policy considerations. The present paper proposes an econometric analysis of turnover in the Brazilian labor market, based on a partial observability bivariate probit model. This model considers the interdependence of decisions taken by workers and firms, helping to elucidate the causes that lead each of them to end an employment relationship. The Employment and Unemployment Survey (PED) conducted by the State System of Data Analysis (SEADE) and by the Inter-Union Department of Statistics and Socioeconomic Studies (DIEESE) provides data at the individual worker level, allowing for the estimation of the joint probabilities of decisions to quit or stay on the job on the worker’s side, and to maintain or fire the employee on the firm’s side, during a given time period. The estimated parameters relate these estimated probabilities to the characteristics of workers, job contracts, and to the potential macroeconomic determinants in different time periods. The results confirm the theoretical prediction that the probability of termination of an employment relationship tends to be smaller as the worker acquires specific skills. The results also show that the establishment of a formal employment relationship reduces the probability of a quit decision by the worker, and also the firm’s firing decision in non-industrial sectors. With regard to the evolution of quit probability over time, the results show that an increase in the unemployment rate inhibits quitting, although this tends to wane as the unemployment rate rises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the commonly held belief that aggregate data display short-run comovement, there has been little discussion about the econometric consequences of this feature of the data. We use exhaustive Monte-Carlo simulations to investigate the importance of restrictions implied by common-cyclical features for estimates and forecasts based on vector autoregressive models. First, we show that the ìbestî empirical model developed without common cycle restrictions need not nest the ìbestî model developed with those restrictions. This is due to possible differences in the lag-lengths chosen by model selection criteria for the two alternative models. Second, we show that the costs of ignoring common cyclical features in vector autoregressive modelling can be high, both in terms of forecast accuracy and efficient estimation of variance decomposition coefficients. Third, we find that the Hannan-Quinn criterion performs best among model selection criteria in simultaneously selecting the lag-length and rank of vector autoregressions.