1 resultado para Extrapolation of hydrological data
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (7)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (37)
- Aston University Research Archive (25)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (112)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (2)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (16)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (49)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (20)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (7)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (10)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- National Center for Biotechnology Information - NCBI (11)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (65)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- Repositorio Institucional Universidad Católica de Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (14)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (12)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (30)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (8)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (16)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (85)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Michigan (80)
- University of Queensland eSpace - Australia (39)
- University of Southampton, United Kingdom (5)
- University of Washington (1)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.