1 resultado para Erdos-Kac central limit theorem
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- Repository Napier (2)
- Aberystwyth University Repository - Reino Unido (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- Adam Mickiewicz University Repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (135)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (29)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Câmara dos Deputados (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (17)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Boston University Digital Common (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (12)
- Cambridge University Engineering Department Publications Database (83)
- CentAUR: Central Archive University of Reading - UK (5)
- Center for Jewish History Digital Collections (3)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (135)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- Duke University (21)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (50)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (4)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (48)
- Indian Institute of Science - Bangalore - Índia (158)
- Infoteca EMBRAPA (24)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- Queensland University of Technology - ePrints Archive (129)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (9)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (5)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Asymmetric kernels are quite useful for the estimation of density functions with bounded support. Gamma kernels are designed to handle density functions whose supports are bounded from one end only, whereas beta kernels are particularly convenient for the estimation of density functions with compact support. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape varies according to the location of the data point, thus also changing the amount of smoothing. This paper applies the central limit theorem for degenerate U-statistics to compute the limiting distribution of a class of asymmetric kernel functionals.