4 resultados para Epididymis tail
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
O objetivo deste trabalho foi mostrar modelagens alternativas à tradicional maneira de se apurar o risco de mercado para ativos financeiros brasileiros. Procurou-se cobrir o máximo possível de fatores de risco existentes no Brasil; para tanto utilizamos as principais proxies para instrumentos de Renda Fixa. Em momentos de volatilidade, o gerenciamento de risco de mercado é bastante criticado por trabalhar dentro de modelagens fundamentadas na distribuição normal. Aqui reside a maior contribuição do VaR e também a maior crítica a ele. Adicionado a isso, temos um mercado caracterizado pela extrema iliquidez no mercado secundário até mesmo em certos tipos de títulos públicos federais. O primeiro passo foi fazer um levantamento da produção acadêmica sobre o tema, seja no Brasil ou no mundo. Para a nossa surpresa, pouco, no nosso país, tem se falado em distribuições estáveis aplicadas ao mercado financeiro, seja em gerenciamento de risco, precificação de opções ou administração de carteiras. Após essa etapa, passamos a seleção das variáveis a serem utilizadas buscando cobrir uma grande parte dos ativos financeiros brasileiros. Assim, deveríamos identificar a presença ou não da condição de normalidade para, aí sim, realizarmos as modelagens das medidas de risco, VaR e ES, para os ativos escolhidos, As condições teóricas e práticas estavam criadas: demanda de mercado (crítica ao método gausiano bastante difundido), ampla cobertura de ativos (apesar do eventual questionamento da liquidez), experiência acadêmica e conhecimento internacional (por meio de detalhado e criterioso estudo da produção sobre o tema nos principais meios). Analisou-se, desta forma, quatro principais abordagens para o cálculo de medidas de risco sendo elas coerentes (ES) ou não (VaR). É importante mencionar que se trata de um trabalho que poderá servir de insumo inicial para trabalhos mais grandiosos, por exemplo, aqueles que incorporarem vários ativos dentro de uma carteira de riscos lineares ou, até mesmo, para ativos que apresentem risco não-direcionais.
Resumo:
This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.
Resumo:
The dissertation goal is to quantify the tail risk premium embedded into hedge funds' returns. Tail risk is the probability of extreme large losses. Although it is a rare event, asset pricing theory suggests that investors demand compensation for holding assets sensitive to extreme market downturns. By de nition, such events have a small likelihood to be represented in the sample, what poses a challenge to estimate the e ects of tail risk by means of traditional approaches such as VaR. The results show that it is not su cient to account for the tail risk stemming from equities markets. Active portfolio management employed by hedge funds demand a speci c measure to estimate and control tail risk. Our proposed factor lls that void inasmuch it presents explanatory power both over the time series as well as the cross-section of funds' returns.
Resumo:
The main purpose of this paper is to propose a methodology to obtain a hedge fund tail risk measure. Our measure builds on the methodologies proposed by Almeida and Garcia (2015) and Almeida, Ardison, Garcia, and Vicente (2016), which rely in solving dual minimization problems of Cressie Read discrepancy functions in spaces of probability measures. Due to the recently documented robustness of the Hellinger estimator (Kitamura et al., 2013), we adopt within the Cressie Read family, this specific discrepancy as loss function. From this choice, we derive a minimum Hellinger risk-neutral measure that correctly prices an observed panel of hedge fund returns. The estimated risk-neutral measure is used to construct our tail risk measure by pricing synthetic out-of-the-money put options on hedge fund returns of ten specific categories. We provide a detailed description of our methodology, extract the aggregate Tail risk hedge fund factor for Brazilian funds, and as a by product, a set of individual Tail risk factors for each specific hedge fund category.