4 resultados para Economic simulation
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
This paper develops background considerations to help better framing the results of a CGE exercise. Three main criticisms are usually addressed to CGE efforts. First, they are too aggregate, their conclusions failing to shed light on relevant sectors or issues. Second, they imply huge data requirements. Timeliness is frequently jeopardised by out-dated sources, benchmarks referring to realities gone by. Finally, results are meaningless, as they answer wrong or ill-posed questions. Modelling demands end up by creating a rather artificial context, where the original questions lose content. In spite of a positive outlook on the first two, crucial questions lie in the third point. After elaborating such questions, and trying to answer some, the text argues that CGE models can come closer to reality. If their use is still scarce to give way to a fruitful symbiosis between negotiations and simulation results, they remain the only available technique providing a global, inter-related way of capturing economy-wide effects of several different policies. International organisations can play a major role supporting and encouraging improvements. They are also uniquely positioned to enhance information and data sharing, as well as putting people from various origins together, to share their experiences. A serious and complex homework is however required, to correct, at least, the most dangerous present shortcomings of the technique.
Resumo:
A intenção deste trabalho é explorar dinâmicas de competição por meio de “simulação baseada em agentes”. Apoiando-se em um crescente número de estudos no campo da estratégia e teoria das organizações que utilizam métodos de simulação, desenvolveu-se um modelo computacional para simular situações de competição entre empresas e observar a eficiência relativa dos métodos de busca de melhoria de desempenho teorizados. O estudo também explora possíveis explicações para a persistência de desempenho superior ou inferior das empresas, associados às condições de vantagem ou desvantagem competitiva
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.