4 resultados para Data-driven energy e ciency
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Nesta dissertação realizou-se um experimento de Monte Carlo para re- velar algumas características das distribuições em amostras finitas dos estimadores Backfitting (B) e de Integração Marginal(MI) para uma regressão aditiva bivariada. Está-se particularmente interessado em fornecer alguma evidência de como os diferentes métodos de seleção da janela hn, tais co- mo os métodos plug-in, impactam as propriedades em pequenas amostras dos estimadores. Está-se interessado, também, em fornecer evidência do comportamento de diferentes estimadores de hn relativamente a seqüência ótima de hn que minimiza uma função perda escolhida. O impacto de ignorar a dependência entre os regressores na estimação da janela é tam- bém investigado. Esta é uma prática comum e deve ter impacto sobre o desempenho dos estimadores. Além disso, não há nenhuma rotina atual- mente disponível nos pacotes estatísticos/econométricos para a estimação de regressões aditivas via os métodos de Backfitting e Integração Marginal. É um dos objetivos a criação de rotinas em Gauss para a implementação prática destes estimadores. Por fim, diferentemente do que ocorre atual- mente, quando a utilização dos estimadores-B e MI é feita de maneira completamente ad-hoc, há o objetivo de fornecer a usuários informação que permita uma escolha mais objetiva de qual estimador usar quando se está trabalhando com uma amostra finita.
Resumo:
We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.
Resumo:
This research attempts to analyze the effects of open government data on the administration and practice of the educational process by comparing the contexts of Brazil and England. The findings illustrate two principal dynamics: control and collaboration. In the case of control, or what is called the "data-driven" paradigm, data help advance the cause of political accountability through the disclosure of school performance. In collaboration, or what is referred to as the "data-informed" paradigm, data is intended to support the decision-making process of administrators through dialogical processes with other social actors.
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative method to estimate treatment e ects in comparative case studies. Abadie et al. [2010] and Abadie et al. [2015] argue that one of the advantages of the SC method is that it imposes a data-driven process to select the comparison units, providing more transparency and less discretionary power to the researcher. However, an important limitation of the SC method is that it does not provide clear guidance on the choice of predictor variables used to estimate the SC weights. We show that such lack of speci c guidances provides signi cant opportunities for the researcher to search for speci cations with statistically signi cant results, undermining one of the main advantages of the method. Considering six alternative speci cations commonly used in SC applications, we calculate in Monte Carlo simulations the probability of nding a statistically signi cant result at 5% in at least one speci cation. We nd that this probability can be as high as 13% (23% for a 10% signi cance test) when there are 12 pre-intervention periods and decay slowly with the number of pre-intervention periods. With 230 pre-intervention periods, this probability is still around 10% (18% for a 10% signi cance test). We show that the speci cation that uses the average pre-treatment outcome values to estimate the weights performed particularly bad in our simulations. However, the speci cation-searching problem remains relevant even when we do not consider this speci cation. We also show that this speci cation-searching problem is relevant in simulations with real datasets looking at placebo interventions in the Current Population Survey (CPS). In order to mitigate this problem, we propose a criterion to select among SC di erent speci cations based on the prediction error of each speci cations in placebo estimations