4 resultados para Data frequency
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
This work evaluates empirically the Taylor rule for the US and Brazil using Kalman Filter and Markov-Switching Regimes. We show that the parameters of the rule change significantly with variations in both output and output gap proxies, considering hidden variables and states. Such conclusions call naturally for robust optimal monetary rules. We also show that Brazil and US have very contrasting parameters, first because Brazil presents time-varying intercept, second because of the rigidity in the parameters of the Brazilian Taylor rule, regardless the output gap proxy, data frequency or sample data. Finally, we show that the long-run inflation parameter of the US Taylor rule is less than one in many periods, contrasting strongly with Orphanides (forthcoming) and Clarida, Gal´i and Gertler (2000), and the same happens with Brazilian monthly data.
Resumo:
This paper develops a framework to test whether discrete-valued irregularly-spaced financial transactions data follow a subordinated Markov process. For that purpose, we consider a specific optional sampling in which a continuous-time Markov process is observed only when it crosses some discrete level. This framework is convenient for it accommodates not only the irregular spacing of transactions data, but also price discreteness. Further, it turns out that, under such an observation rule, the current price duration is independent of previous price durations given the current price realization. A simple nonparametric test then follows by examining whether this conditional independence property holds. Finally, we investigate whether or not bid-ask spreads follow Markov processes using transactions data from the New York Stock Exchange. The motivation lies on the fact that asymmetric information models of market microstructures predict that the Markov property does not hold for the bid-ask spread. The results are mixed in the sense that the Markov assumption is rejected for three out of the five stocks we have analyzed.
Resumo:
Aiming at empirical findings, this work focuses on applying the HEAVY model for daily volatility with financial data from the Brazilian market. Quite similar to GARCH, this model seeks to harness high frequency data in order to achieve its objectives. Four variations of it were then implemented and their fit compared to GARCH equivalents, using metrics present in the literature. Results suggest that, in such a market, HEAVY does seem to specify daily volatility better, but not necessarily produces better predictions for it, what is, normally, the ultimate goal. The dataset used in this work consists of intraday trades of U.S. Dollar and Ibovespa future contracts from BM&FBovespa.
Resumo:
Real exchange rate is an important macroeconomic price in the economy and a ects economic activity, interest rates, domestic prices, trade and investiments ows among other variables. Methodologies have been developed in empirical exchange rate misalignment studies to evaluate whether a real e ective exchange is overvalued or undervalued. There is a vast body of literature on the determinants of long-term real exchange rates and on empirical strategies to implement the equilibrium norms obtained from theoretical models. This study seeks to contribute to this literature by showing that it is possible to calculate the misalignment from a mixed ointegrated vector error correction framework. An empirical exercise using United States' real exchange rate data is performed. The results suggest that the model with mixed frequency data is preferred to the models with same frequency variables