2 resultados para Convex piecewise-linear costs
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
OBJECTIVE: To analyze lifestyle risk factors related to direct healthcare costs and the indirect costs due to sick leave among workers of an airline company in Brazil. METHODS: In this longitudinal 12-month study of 2,201 employees of a Brazilian airline company, the costs of sick leave and healthcare were the primary outcomes of interest. Information on the independent variables, such as gender, age, educational level, type of work, stress, and lifestyle-related factors (body mass index, physical activity, and smoking), was collected using a questionnaire on enrolment in the study. Data on sick leave days were available from the company register, and data on healthcare costs were obtained from insurance records. Multivariate linear regression analysis was used to investigate the association between direct and indirect healthcare costs with sociodemographic, work, and lifestyle-related factors. RESULTS: Over the 12-month study period, the average direct healthcare expenditure per worker was US$505.00 and the average indirect cost because of sick leave was US$249.00 per worker. Direct costs were more than twice the indirect costs and both were higher in women. Body mass index was a determinant of direct costs and smoking was a determinant of indirect costs. CONCLUSIONS: Obesity and smoking among workers in a Brazilian airline company were associated with increased health costs. Therefore, promoting a healthy diet, physical activity, and anti-tobacco campaigns are important targets for health promotion in this study population.
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.