2 resultados para Constraint based modelling

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A abordagem de Modelos Baseados em Agentes é utilizada para trabalhar problemas complexos, em que se busca obter resultados partindo da análise e construção de componentes e das interações entre si. Os resultados observados a partir das simulações são agregados da combinação entre ações e interferências que ocorrem no nível microscópico do modelo. Conduzindo, desta forma, a uma simulação do micro para o macro. Os mercados financeiros são sistemas perfeitos para o uso destes modelos por preencherem a todos os seus requisitos. Este trabalho implementa um Modelo de Mercado Financeiro Baseado em Agentes constituído por diversos agentes que interagem entre si através de um Núcleo de Negociação que atua com dois ativos e conta com o auxílio de formadores de mercado para promover a liquidez dos mercados, conforme se verifica em mercados reais. Para operação deste modelo, foram desenvolvidos dois tipos de agentes que administram, simultaneamente, carteiras com os dois ativos. O primeiro tipo usa o modelo de Markowitz, enquanto o segundo usa técnicas de análise de spread entre ativos. Outra contribuição deste modelo é a análise sobre o uso de função objetivo sobre os retornos dos ativos, no lugar das análises sobre os preços.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare three frequently used volatility modelling techniques: GARCH, Markovian switching and cumulative daily volatility models. Our primary goal is to highlight a practical and systematic way to measure the relative effectiveness of these techniques. Evaluation comprises the analysis of the validity of the statistical requirements of the various models and their performance in simple options hedging strategies. The latter puts them to test in a "real life" application. Though there was not much difference between the three techniques, a tendency in favour of the cumulative daily volatility estimates, based on tick data, seems dear. As the improvement is not very big, the message for the practitioner - out of the restricted evidence of our experiment - is that he will probably not be losing much if working with the Markovian switching method. This highlights that, in terms of volatility estimation, no clear winner exists among the more sophisticated techniques.