3 resultados para Computational economics
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
A dificuldade em se caracterizar alocações ou equilíbrios não estacionários é uma das principais explicações para a utilização de conceitos e hipóteses que trivializam a dinâmica da economia. Tal dificuldade é especialmente crítica em Teoria Monetária, em que a dimensionalidade do problema é alta mesmo para modelos muito simples. Neste contexto, o presente trabalho relata a estratégia computacional de implementação do método recursivo proposto por Monteiro e Cavalcanti (2006), o qual permite calcular a sequência ótima (possivelmente não estacionária) de distribuições de moeda em uma extensão do modelo proposto por Kiyotaki e Wright (1989). Três aspectos deste cálculo são enfatizados: (i) a implementação computacional do problema do planejador envolve a escolha de variáveis contínuas e discretas que maximizem uma função não linear e satisfaçam restrições não lineares; (ii) a função objetivo deste problema não é côncava e as restrições não são convexas; e (iii) o conjunto de escolhas admissíveis não é conhecido a priori. O objetivo é documentar as dificuldades envolvidas, as soluções propostas e os métodos e recursos disponíveis para a implementação numérica da caracterização da dinâmica monetária eficiente sob a hipótese de encontros aleatórios.
Resumo:
This paper shows existence of approximate recursive equilibrium with minimal state space in an environment of incomplete markets. We prove that the approximate recursive equilibrium implements an approximate sequential equilibrium which is always close to a Magill and Quinzii equilibrium without short sales for arbitrarily small errors. This implies that the competitive equilibrium can be implemented by using forecast statistics with minimal state space provided that agents will reduce errors in their estimates in the long run. We have also developed an alternative algorithm to compute the approximate recursive equilibrium with incomplete markets and heterogeneous agents through a procedure of iterating functional equations and without using the rst order conditions of optimality.
Resumo:
Starting from the idea that economic systems fall into complexity theory, where its many agents interact with each other without a central control and that these interactions are able to change the future behavior of the agents and the entire system, similar to a chaotic system we increase the model of Russo et al. (2014) to carry out three experiments focusing on the interaction between Banks and Firms in an artificial economy. The first experiment is relative to Relationship Banking where, according to the literature, the interaction over time between Banks and Firms are able to produce mutual benefits, mainly due to reduction of the information asymmetry between them. The following experiment is related to information heterogeneity in the credit market, where the larger the bank, the higher their visibility in the credit market, increasing the number of consult for new loans. Finally, the third experiment is about the effects on the credit market of the heterogeneity of prices that Firms faces in the goods market.