3 resultados para Chebyshev And Binomial Distributions
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true" probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible "to learn" the "true" additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the "Iearning" (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials.
Resumo:
In this essay, a method for comparing the asymptotic power of the multivariate unit root tests proposed in Phillips & Durlauf (1986) and Flˆores, Preumont & Szafarz (1996) is proposed. In order to determine the asymptotic power of the tests the asymptotic distributions under the null hypothesis and under the set of alternative hypotheses described in Phillips (1988) are determined. In addition, a test which combines characteristics of both tests is proposed and its distributions under the null hypothesis and the same set of alternative hypotheses are determined. This allows us to determine what causes any difference in the asymptotic power of the two tests against the set of alternative hypotheses considered
Resumo:
In this note, in an independent private values auction framework, I discuss the relationship between the set of types and the distribution of types. I show that any set of types, finite dimensional or not, can be extended to a larger set of types preserving incentive compatibility constraints, expected revenue and bidder’s expected utilities. Thus for example we may convexify a set of types making our model amenable to the large body of theory in economics and mathematics that relies on convexity assumptions. An interesting application of this extension procedure is to show that although revenue equivalence is not valid in general if the set of types is not convex these mechanism have underlying distinct allocation mechanism in the extension. Thus we recover in these situations the revenue equivalence.