4 resultados para Chaotic diffusion
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Data available on continuos-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the use of Martingale Estimating Functions and the application of Generalized Method of Moments (GMM).
Resumo:
Data available on continuous-time diffusions are always sampled discretely in time. In most cases, the likelihood function of the observations is not directly computable. This survey covers a sample of the statistical methods that have been developed to solve this problem. We concentrate on some recent contributions to the literature based on three di§erent approaches to the problem: an improvement of the Euler-Maruyama discretization scheme, the employment of Martingale Estimating Functions, and the application of Generalized Method of Moments (GMM).
Resumo:
In this paper we prove convergence to chaotic sunspot equilibrium through two learning rules used in the bounded rationality literature. The rst one shows the convergence of the actual dynamics generated by simple adaptive learning rules to a probability distribution that is close to the stationary measure of the sunspot equilibrium; since this stationary measure is absolutely continuous it results in a robust convergence to the stochastic equilibrium. The second one is based on the E-stability criterion for testing stability of rational expectations equilibrium, we show that the conditional probability distribution de ned by the sunspot equilibrium is expectational stable under a reasonable updating rule of this parameter. We also report some numerical simulations of the processes proposed.