7 resultados para CD62L, naive T-Zellen, adoptiver T-Zelltransfer
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
The Prospect Theory is one of the basis of Behavioral Finance and models the investor behavior in a different way than von Neumann and Morgenstern Utility Theory. Behavioral characteristics are evaluated for different control groups, validating the violation of Utility Theory Axioms. Naïve Diversification is also verified, utilizing the 1/n heuristic strategy for investment funds allocations. This strategy causes different fixed and equity allocations, compared to the desirable exposure, given the exposure of the subsample that answered a non constrained allocation question. When compared to non specialists, specialists in finance are less risk averse and allocate more of their wealth on equity.
Resumo:
I study the asset-pricing implications in an cnviromncnt with feedback traders and rational arbitrageurs. Feedback traders are defined as possible naive investors who buy after a raise in prices and sell after a drop in prices. I consider two types of feedback strategies: (1) short-term (SF), motivated by institutional rulcs as top-losscs and margin calls and (2) long-tcrm (LF), motivated by representativeness bias from non-sophisticated investors. Their presence in the market follows a stochastic regime swift process. Short lived assumption for the arbitrageurs prevents the correction of the misspricing generated by feedback strategies. The estimated modcl using US data suggests that the regime switching is able to capture the time varying autocorrclation of returns. The segregation of feedback types helps to identify the long term component that otherwise would not show up due to the large movements implied by the SF typc. The paper also has normativo implications for practioners since it providos a methodology to identify mispricings driven by feedback traders.
Resumo:
Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.
Resumo:
This work assesses the forecasts of three nonlinear methods | Markov Switching Autoregressive Model, Logistic Smooth Transition Auto-regressive Model, and Auto-metrics with Dummy Saturation | for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double di erencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double di erencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.
Resumo:
Modelos para detecção de fraude são utilizados para identificar se uma transação é legítima ou fraudulenta com base em informações cadastrais e transacionais. A técnica proposta no estudo apresentado, nesta dissertação, consiste na de Redes Bayesianas (RB); seus resultados foram comparados à técnica de Regressão Logística (RL), amplamente utilizada pelo mercado. As Redes Bayesianas avaliadas foram os classificadores bayesianos, com a estrutura Naive Bayes. As estruturas das redes bayesianas foram obtidas a partir de dados reais, fornecidos por uma instituição financeira. A base de dados foi separada em amostras de desenvolvimento e validação por cross validation com dez partições. Naive Bayes foram os classificadores escolhidos devido à simplicidade e a sua eficiência. O desempenho do modelo foi avaliado levando-se em conta a matriz de confusão e a área abaixo da curva ROC. As análises dos modelos revelaram desempenho, levemente, superior da regressão logística quando comparado aos classificadores bayesianos. A regressão logística foi escolhida como modelo mais adequado por ter apresentado melhor desempenho na previsão das operações fraudulentas, em relação à matriz de confusão. Baseada na área abaixo da curva ROC, a regressão logística demonstrou maior habilidade em discriminar as operações que estão sendo classificadas corretamente, daquelas que não estão.
Resumo:
Esse estudo busca analisar o desempenho de um portfólio de investimento constituído através da contribuição equânime do risco de seus ativos para o risco total do portfólio, ou seja, a chamada estratégia de risk parity, utilizando uma amostra composta de dados diários de cotações de fechamento de 27 ações pertencentes ao mercado brasileiro de ações entre janeiro de 2004 e dezembro de 2014. O estudo compara tal portfólio com outros três portfólios constituídos através de abordagens tradicionais: o portfólio baseado na estratégia por média-variância, o portfólio baseado na estratégia por mínima variância e o portfólio igualmente ponderado, também conhecido como portfólio ingênuo (naive). Ao mesmo tempo, o estudo analisa o desempenho do portfólio comparado a dois indicadores importantes do mercado de capitais brasileiro: o IBOVESPA e o CDI. Foram construídas séries temporais com rebalanceamento trimestral dos portfólios para o desenvolvimento do estudo, como efetuado em Maillard et al. (2010). Os resultados demonstram que o portfólio constituído através da contribuição equânime ao risco não apresentou desempenho superior quando comparado aos portfólios por média-variância e por mínima variância, em termos de retorno e risco. Por outro lado, quando comparado ao portfólio ingênuo, ao IBOVESPA e ao CDI, o desempenho obtido foi superior, tendo também apresentado resultados similares aos exibidos em Maillard et al. (2010). O estudo conclui que a construção de carteiras por risk parity é uma alternativa viável para a composição de carteiras que buscam estabilidade na alocação de risco e nos pesos dos ativos no longo prazo, diante de diferentes cenários macroeconômicos.
Resumo:
O trabalho tem como objetivo verificar a existência e a relevância dos Efeitos Calendário em indicadores industriais. São explorados modelos univariados lineares para o indicador mensal da produção industrial brasileira e alguns de seus componentes. Inicialmente é realizada uma análise dentro da amostra valendo-se de modelos estruturais de espaço-estado e do algoritmo de seleção Autometrics, a qual aponta efeito significante da maioria das variáveis relacionadas ao calendário. Em seguida, através do procedimento de Diebold-Mariano (1995) e do Model Confidence Set, proposto por Hansen, Lunde e Nason (2011), são realizadas comparações de previsões de modelos derivados do Autometrics com um dispositivo simples de Dupla Diferença para um horizonte de até 24 meses à frente. Em geral, os modelos Autometrics que consideram as variáveis de calendário se mostram superiores nas projeções de 1 a 2 meses adiante e superam o modelo simples em todos os horizontes. Quando se agrega os componentes de categoria de uso para formar o índice industrial total, há evidências de ganhos nas projeções de prazo mais curto.