7 resultados para Bayesian inference, Behaviour analysis, Security, Visual surveillance

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nesta Tese foram apresentadas algumas alternativas de antecipação do preço futuro do aço a partir do emprego de modelos econométricos. Estes modelos foram definidos em função da análise do comportamento, no longo prazo, entre as séries de preços do aço no Brasil vis-à-vis seus respectivos preços no exterior. A verificação deste comportamento de longo prazo foi realizada através do teste de cointegração. A partir da constatação da não cointegração dessas séries, foram definidos dois modelos, cujas previsões, para diversos períodos, foram aqui apresentadas. Foi feita uma análise comparativa, onde foram identificados o melhor modelo e para quais temporalidades de previsão são melhor empregados. Como foi aqui comprovado, o aço é um insumo primordial nos empreendimentos industriais. Considerando que, atualmente, os preços são demandados de forma firme, ou seja, sem possibilidade de alteração, faz-se necessária a identificação de mecanismos de antecipação dos movimentos futuros desta commodity, de modo que se possa considerá-los na definição do preço ofertado, reduzindo assim perdas por suas flutuações inesperadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive Strategy literature predicts three different mechanisms of performance generation, thus distinguishing between firms that have competitive advantage, firms that have competitive disadvantage or firms that have neither. Nonetheless, previous works in the field have fitted a single normal distribution to model firm performance. Here, we develop a new approach that distinguishes among performance generating mechanisms and allows the identification of firms with competitive advantage or disadvantage. Theorizing on the positive feedback loops by which firms with competitive advantage have facilitated access to acquire new resources, we proposed a distribution we believe data on firm performance should follow. We illustrate our model by assessing its fit to data on firm performance, addressing its theoretical implications and comparing it to previous works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents new methodology for making Bayesian inference about dy~ o!s for exponential famiIy observations. The approach is simulation-based _~t> use of ~vlarkov chain Monte Carlo techniques. A yletropolis-Hastings i:U~UnLlllll 1::; combined with the Gibbs sampler in repeated use of an adjusted version of normal dynamic linear models. Different alternative schemes are derived and compared. The approach is fully Bayesian in obtaining posterior samples for state parameters and unknown hyperparameters. Illustrations to real data sets with sparse counts and missing values are presented. Extensions to accommodate for general distributions for observations and disturbances. intervention. non-linear models and rnultivariate time series are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

According to Diamond (1977), one of the reasons for the existence of social security systems is that they function as an income redistribution mechanism. There is an extensive literature that tests whether social security systems produce the desired results in developed countries (mainly for the U.S.A.). Nevertheless, there is not an obvious consensus about this social security property and there is little evidence for developing countries. In this article, we test this property for the Brazilian Social Security System. In addition, we also look at another question which has not been answered yet in the previous literature. Is the trend of social security systems increasingly progressive or regressive? We conclude that the changes in Brazilian Social Security legislation reduced inequality between 1987 and 1996, but only for the elderly. For the other age groups, there is a stable trend. Results for the period between 1996 and 2006 reveal that the Brazilian system is neutral for all cohorts. Therefore, we found out that social security systems are not an effective mechanism for income redistribution, as predicted by previous studies.