5 resultados para Bayesian Networks Elicitation GIS Integration

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A incerteza é o principal elemento do futuro. Desde os primórdios, o homem busca métodos para estruturar essas incertezas futuras e assim poder guiar suas ações. Apenas a partir da segunda metade do século XX, porém, quando os métodos projetivos e preditivos já não eram mais capazes de explicar o futuro em um ambiente mundial cada vez mais interligado e turbulento, é que nasceram os primeiros métodos estruturados de construção de cenários. Esses métodos prospectivos visam lançar a luz sobre o futuro não para projetar um futuro único e certo, mas para visualizar uma gama de futuros possíveis e coerentes. Esse trabalho tem como objetivo propor uma nova abordagem à construção de cenários, integrando o Método de Impactos Cruzados à Análise Morfológica, utilizando o conceito de Rede Bayesianas, de fonna a reduzir a complexidade da análise sem perda de robustez. Este trabalho fará uma breve introdução histórica dos estudos do futuro, abordará os conceitos e definições de cenários e apresentará os métodos mais utilizados. Como a abordagem proposta pretende-se racionalista, será dado foco no Método de Cenários de Michel Godet e suas ferramentas mais utilizadas. Em seguida, serão apresentados os conceitos de Teoria dos Grafos, Causalidade e Redes Bayesianas. A proposta é apresentada em três etapas: 1) construção da estrutura do modelo através da Análise Estrutural, propondo a redução de um modelo inicialmente cíclico para um modelo acíclico direto; 2) utilização da Matriz de Impactos Cruzados como ferramenta de alimentação, preparação e organização dos dados de probabilidades; 3) utilização da Rede Bayesiana resultante da primeira etapa como subespaço de análise de uma Matriz Morfológica. Por último, um teste empírico é realizado para comprovar a proposta de redução do modelo cíclico em um modelo acíclico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho minera as informações coletadas no processo de vestibular entre 2009 e 2012 para o curso de graduação de administração de empresas da FGV-EAESP, para estimar classificadores capazes de calcular a probabilidade de um novo aluno ter bom desempenho. O processo de KDD (Knowledge Discovery in Database) desenvolvido por Fayyad et al. (1996a) é a base da metodologia adotada e os classificadores serão estimados utilizando duas ferramentas matemáticas. A primeira é a regressão logística, muito usada por instituições financeiras para avaliar se um cliente será capaz de honrar com seus pagamentos e a segunda é a rede Bayesiana, proveniente do campo de inteligência artificial. Este estudo mostre que os dois modelos possuem o mesmo poder discriminatório, gerando resultados semelhantes. Além disso, as informações que influenciam a probabilidade de o aluno ter bom desempenho são a sua idade no ano de ingresso, a quantidade de vezes que ele prestou vestibular da FGV/EAESP antes de ser aprovado, a região do Brasil de onde é proveniente e as notas das provas de matemática fase 01 e fase 02, inglês, ciências humanas e redação. Aparentemente o grau de formação dos pais e o grau de decisão do aluno em estudar na FGV/EAESP não influenciam nessa probabilidade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the Main Subjects to Be Discussed, in Order to Adjust Latin American Economies to a Regional Integration Network, as Imposed By Mercosul or Other Economic Common Markets, is Related to the Employment and Other Labor Markets Public Policies. the Question to Be Posed Is: Having in Mind the Characteristics of Different Labor Markets and Labor Forces, What are the Impacts of Governmental Measures Presented in the Diverse Economic Conditions of Those Countries. Having in Mind These Impacts, This Paper Aims to Examine the Requisites to Adjust the Labor Structure Standards of Latin American Countries and What Would Be the Reforms to Be Performed By These Countries in Order to Prepare These Markets and Labor Forces to Adapt to Regional Integration Networks Represented By Mercosul, Alca or Other Common Markets. There are Evaluated the Impacts of the Globalization Process, Economic Stabilization and Reform Policies Undertaken By Some Selected Latin American Countries Since the Eighties on the Labor Structure Standards, Considering the Specific Adjustment Measures to Cope With the Negative Effects of These Policies. Next, Some Cases of Europe Union (Eu) Countries Measures to Prepare to Integration is Examined, in Order to Provide Some Elements to Better Understand the Possibilities to Handle With the Extensive Changes in External Conditions. in Sequence Some Statistical Indicatives of the Impacts of These Measures on the Occupational Structuring are Analyzed For a Group of Selected Latin American and Eu Countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.