1 resultado para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (27)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (131)
- CentAUR: Central Archive University of Reading - UK (54)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (19)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (8)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (17)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (20)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (35)
- Institutional Repository of Leibniz University Hannover (3)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (5)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (204)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (60)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (18)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (23)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (4)
- University of Michigan (3)
- University of Queensland eSpace - Australia (16)
- University of Washington (6)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.