3 resultados para Approximate solutions
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
In this survey, we presented the general idea and main results from what we understand that are the most important contributions to contractual solutions to the holdup problem literature. The aim of this paper is to push the previous analysis, uniform the notation and provide a snapshot on the most recent literature, as well as bring topics for future inquires on this issue.
Resumo:
This paper shows existence of approximate recursive equilibrium with minimal state space in an environment of incomplete markets. We prove that the approximate recursive equilibrium implements an approximate sequential equilibrium which is always close to a Magill and Quinzii equilibrium without short sales for arbitrarily small errors. This implies that the competitive equilibrium can be implemented by using forecast statistics with minimal state space provided that agents will reduce errors in their estimates in the long run. We have also developed an alternative algorithm to compute the approximate recursive equilibrium with incomplete markets and heterogeneous agents through a procedure of iterating functional equations and without using the rst order conditions of optimality.
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.