2 resultados para Aplicação normal de Gauss
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Este trabalho aplica a teoria de cópulas à mensuração do risco de mercado, através do cálculo do Value at Risk (VaR). A função de cópula oferece uma maior flexibilidade para a agregação de riscos quando comparada com abordagens tradicionais de mensuração de risco. A teoria de cópulas permite a utilização de distribuições de probabilidade diferentes da normal para a modelagem individual dos fatores de risco. Além disso, diferentes estruturas de associação entre eles podem ser aplicadas sem que restrições sejam impostas às suas distribuições. Dessa forma, premissas como a normalidade conjunta dos retornos e a linearidade na dependência entre fatores de risco podem ser dispensadas, possibilitando a correta modelagem de eventos conjuntos extremos e de assimetria na relação de dependência. Após a apresentação dos principais conceitos associados ao tema, um modelo de cópula foi desenvolvido para o cálculo do VaR de três carteiras, expostas aos mercados brasileiros cambial e acionário. Em seguida, a sua precisão foi comparada com a das metodologias tradicionais delta-normal e de simulação histórica. Os resultados mostraram que o modelo baseado na teoria de cópulas foi superior aos tradicionais na previsão de eventos extremos, representados pelo VaR 99%. No caso do VaR 95%, o modelo delta-normal apresentou o melhor desempenho. Finalmente, foi possível concluir que o estudo da teoria de cópulas é de grande relevância para a gestão de riscos financeiros. Fica a sugestão de que variações do modelo de VaR desenvolvido neste trabalho sejam testadas, e que esta teoria seja também aplicada à gestão de outros riscos, como o de crédito, operacional, e até mesmo o risco integrado.
Resumo:
Tal como ressaltado em de Faro e Guerra (2014), tem sido frequente em nossos tribunais, sentenças judiciais determinando que, relativamente ao caso de amortizações de dívidas com prestações constantes, a popular Tabela Price seja substituída por um sistema que, fundamentado em uma particular aplicação do regime de juros simples, vem sendo cognominado de “Método de Gauss” (cf. Antonick e Assunção, 2006 e Nogueira, 2013). E isso, frize-se, mantendo-se o valor numérico da taxa de juros especificada no contrato de financiamento (usualmente, habitacional). A par de ser totalmente inadequado, como discutido em de Faro (2014c), associar o nome do grande matemático alemão Johann Carl Friedrich Gauss (1777-1855) ao procedimento em questão, sucede que ao mesmo, como a qualquer outro que seja baseado no regime de juros simples, associam-se incontornáveis inconsistências. Como já anteriormente, amplamente evidenciado em de Faro (2013b e 2014a). Tomando a Tabela Price como base de comparação, o propósito do presente trabalho é o de aprofundar a análise das deficiências do que tem sido denominado como “Método de Gauss”. Em particular, dado que as sentenças judiciais costumam não alterar os valores numéricos das taxas contratuais de juros, substituindo tão somente o regime de juros compostos, que está implícito na Tabela Price, pela peculiar variante do regime de juros simples que está subjacente ao que se chama de “Método de Gauss”, buscar-se-á considerar a questão do ponto de vista do financiador.