5 resultados para Árvores

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trata da análise das principais ferramentas quantitativas para a tomada de decisão e análise de investimentos, em particular de análise por árvore de decisão e teoria de precificação de opções aplicada a casos de investimentos em ativos não financeiros. Mostra as vantagens e desvantagens de cada metodologia, em especial as limitações de aplicação prática da TPO. Propõe uma metodologia para calcular o valor das "opções reais" utilizando árvores de decisão

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O trabalho busca analisar e entender se a aplicação de técnicas de Data mining em processos de aquisição de clientes de cartão de crédito, especificamente os que não possuem uma conta corrente em banco, podem trazer resultados positivos para as empresas que contam com processos ativos de conquista de clientes. Serão exploradas três técnicas de amplo reconhecimento na comunidade acadêmica : Regressão logística, Árvores de decisão, e Redes neurais. Será utilizado como objeto de estudo uma empresa do setor financeiro, especificamente nos seus processos de aquisição de clientes não correntistas para o produto cartão de crédito. Serão mostrados resultados da aplicação dos modelos para algumas campanhas passadas de venda de cartão de crédito não correntistas, para que seja possível verificar se o emprego de modelos estatísticos que discriminem os clientes potenciais mais propensos dos menos propensos à contratação podem se traduzir na obtenção de ganhos financeiros. Esses ganhos podem vir mediante redução dos custos de marketing abordando-se somente os clientes com maiores probabilidades de responderem positivamente à campanha. A fundamentação teórica se dará a partir da introdução dos conceitos do mercado de cartões de crédito, do canal telemarketing, de CRM, e das técnicas de data mining. O trabalho apresentará exemplos práticos de aplicação das técnicas mencionadas verificando os potenciais ganhos financeiros. Os resultados indicam que há grandes oportunidades para o emprego das técnicas de data mining nos processos de aquisição de clientes, possibilitando a racionalização da operação do ponto de vista de custos de aquisição.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta pesquisa teve como principal objetivo examinar a relação entre Consumo de Energia Elétrica e Renda Familiar nos domicílios do município de São Paulo. Investigou-se a utilidade do consumo de energia elétrica como base para um indicador que possibilite a extensão e o refinamento do Critério de Classificação Econômica Brasil para estimar o poder de compra da população em geral. A pesquisa dividiu-se em dois níveis de investigação. O primeiro, domiciliar, para o qual foram utilizados três conjuntos de dados oriundos de pesquisas domiciliares (Pesquisa ABRADEE, Pesquisa de Posses e Hábitos do PROCEL, e Pesquisa de Microcrédito da Baixa Renda da FGV-EAESP). O segundo nível, territorial, investigou indicadores de renda, consumo de energia elétrica e classe econômica agregados por áreas de ponderação (conjunto de setores censitários), e utilizou microdados do Censo Demográfico 2000 do município de São Paulo em conjunto com a base de domicílios da AES Eletropaulo. A investigação domiciliar mostrou que não há vantagens na substituição plena da aplicação do Critério Brasil pela coleta de indicadores de consumo de energia elétrica em levantamentos domiciliares. No entanto, o uso combinado do Critério Brasil, do valor da conta de luz e do número de pessoas (ou número de dormitórios) no domicílio apresenta benefícios na classificação da renda (os gráficos de ganhos das árvores de classificação combinadas aproximam-se mais da distribuição real da renda, apesar de o coeficiente de explicação da renda aumentar apenas de 0,577 para 0,582). Além disso, ao contrário do que se especulava, para a baixa renda a associação entre renda e consumo de energia elétrica mostrou-se fraca, apesar de o coeficiente de explicação da renda aumentar de 0,222 para 0,300 quando incorporamos o consumo de energia elétrica e o número de pessoas ao modelo de regressão da renda pelo Critério Brasil. Em nível territorial, as relações entre Renda, Consumo de Energia Elétrica e Classificação Econômica do Critério Brasil mostraram-se muito fortes (os coeficientes de explicação da renda atingiram valores de 0,912 a 0,960), permitindo que medidas de consumo médio de energia elétrica agregadas em áreas de ponderação sejam ótimos indicadores regionais de concentração de renda e classificação econômica dos domicílios para o município de São Paulo. Por serem atuais, disponíveis e de atualização mensal, os indicadores de consumo de energia elétrica, quando disponibilizados pelas empresas de distribuição de energia, podem ser de grande utilidade para empresas de mercado, como subsídio a estratégias que necessitem de informações de classificação, concentração e previsão da renda domiciliar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esse trabalho comparou, para condições macroeconômicas usuais, a eficiência do modelo de Redes Neurais Artificiais (RNAs) otimizadas por Algoritmos Genéticos (AGs) na precificação de opções de Dólar à Vista aos seguintes modelos de precificação convencionais: Black-Scholes, Garman-Kohlhagen, Árvores Trinomiais e Simulações de Monte Carlo. As informações utilizadas nesta análise, compreendidas entre janeiro de 1999 e novembro de 2006, foram disponibilizadas pela Bolsa de Mercadorias e Futuros (BM&F) e pelo Federal Reserve americano. As comparações e avaliações foram realizadas com o software MATLAB, versão 7.0, e suas respectivas caixas de ferramentas que ofereceram o ambiente e as ferramentas necessárias à implementação e customização dos modelos mencionados acima. As análises do custo do delta-hedging para cada modelo indicaram que, apesar de mais complexa, a utilização dos Algoritmos Genéticos exclusivamente para otimização direta (binária) dos pesos sinápticos das Redes Neurais não produziu resultados significativamente superiores aos modelos convencionais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O cenário de continuo aumento do consumo de derivados do petróleo aliado a conscientização de que é necessário existir um equilíbrio com relação a exploração de recursos naturais e preservação do meio ambiente, vem impulsionando a busca por fontes alternativas de energia. Esse crescente interesse vem se aplicando a geração de energia a partir de biomassa da cana de açúcar, que vem se tornando cada vez mais comuns no Brasil, porém ainda existe um imenso potencial a ser explorado. Dentro deste contexto, se torna relevante a tomada de decisão de investimentos em projetos de cogeração e este trabalho busca incrementar a analise e tomada de decisão com a utilização da Teoria das Opções Reais, uma ferramenta de agregação de valor às incertezas, cabendo perfeitamente ao modelo energético brasileiro, onde grandes volatilidades do preço de energia são observadas ao longo dos anos. O objetivo do trabalho é determinar o melhor momento para uma biorrefinaria investir em unidades de cogeração. A estrutura do trabalho foi dividida em três cenários de porte de biorrefinarias, as de 2 milhões de capacidade de moagem de cana-de-açúcar por ano, as de 4 milhões e as de 6 milhões, visando assim ter uma representação amostral das biorrefinarias do país. Além disso, analisaram-se três cenários de volatilidade atrelados ao preço futuro de energia, dado que a principal variável de viabilização deste tipo de projeto é o preço de energia. As volatilidades foram calculadas de acordo com histórico do ambiente regulado, o dobro do ambiente regulado e projeção de PLD, representando, respectivamente, níveis baixos, médios e altos, de volatilidade do preço de energia. Após isso, foram elaboradas as nove árvores de decisão, que demonstram para os gestores de investimento que em um cenário de baixa volatilidade cria-se valor estar posicionado e ter a opção real de investir ou adiar investimento para qualquer porte de usina. No cenário de média volatilidade de preço, aconselha-se ao gestor estar posicionado em usinas de médio a grande porte para viabilização do investimento. Por fim, quando o cenário de preços é de grande volatilidade, tem-se um maior risco e existe a maior probabilidade de viabilização do investimento em usinas de grande porte.